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Abstract

In this material, we give a detailed derivation of the Jacobian matrix for the point-, line-, and plane- reprojection

factor respectively. The point reprojection factor is straight forward, while the line reprojection factor and plane

reprojection factor is somehow complicated due to the minimum parameters of lines and planes respectively. We

adopt the line reprojection error following [1], [2], and the plane reprojection error following [3]. Using point-line-

plane structure primitives as landmark during the motion tracking, we can lead to a more accurate and robust SLAM

system in both the frame-to-frame tracking (front-end) and factor graph based bundle adjustment (back-end).

I. PRELIMINARIES

Special Orthogonal Group, SO(3) An rotation in 3D space can be represented as an orthogonal matrix R ∈

R3×3. Those orthogonal matrixes coincide with the general matrix multiplication and transposition form the Special

Orthogonal Group, i.e. SO(3)
.
= {R ∈ R3×3 : RRT = I, det(R) = 1}. Given a rotation matrix R ∈ SO(3), there

is a skew matrix S ∈ so(3) corresponding to R using the exponential map and log map:

exp(S) = R ∈ SO(3)

log(R) = S ∈ so(3)

where so(3) is the Lie Algebra of manifold SO(3) [4]. We can identify every skew matrix with a vector ω ∈ R3

using the hat operator:

ω∧ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω =


ω1

ω2

ω3

 ∈ R3

and on the vice verse the vee operator ω = S∨ if S = ω∧ ∈ so(3). Therefore we directly build the exponential

map and log map between a vector ω ∈ R3 and rotation matrix R ∈ SO(3) in the following:

Exp(ω) = exp(ω∧) = R ∈ SO(3)

Log(R) = log(R)∨ = ω ∈ R3

and use a vector ω ∈ R3 as the minimal representation of a rotation matrix R ∈ SO(3). Actually, such vector ω

is the rotation vector of the rotation matrix R following the Rodrigues Fomula:

Exp(ω) = exp(ω∧) = I + sinθ(ω̂)∧ + (1− cosθ)(ω̂ω̂T − I)
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with θ = |ω| and ω̂ = ω
|ω| .

According the the BCH formula [4], we have

Log(Exp(ω1)Exp(ω2)) ≈

 Jl(ω2)−1ω1 + ω2 |ω1| < ε

Jr(ω1)−1ω2 + ω1 |ω2| < ε
(1)

with Jl(ω) and Jr(ω) is the Left Jacobian and Right Jacobian of rotation matrix separately, with Jl(ω) =

Exp(ω)Jr(ω) [4].

Quaternion A rotation matrix R ∈ SO(3) can also be represented as a unit quaternion q ∈ R4 with |q| = 1.

Since the DoF of a unit quaternion q is 3, we denote a quaternion set S3 .
= {q ∈ R4 : |q| = 1} to represent all the

unit quaternions. A multiplication operator ⊕ [4] is defined as

q ⊕ q′ =

 q′4I3 − q’∧ q’

−q’T q′4

 q

q4


q =

 q

q4

 q′ =

 q’

q′4


Therefore iversion q−1 of a quaternion q is just

q−1 =

 −q

q4

 q =

 q

q4


Similarly the exponential map and log map between a vector ω ∈ R3 and a quaternion q ∈ S3 [4] is defined as

exp(ω) =

 1
2sinc(

θ
2 )ω̂

cos( θ2 )

 ∈ S3 θ = |ω| ω̂ =
ω

|ω|

log(q) =
2 ∗ cos−1(q4)

|q|
q ∈ R3

q = (q q4)T ∈ S3

Given a vector ω ∈ R3, there is a rotation matrix Rω ∈ SO(3) such that Exp(ω) = Rω and there is also a

quaternion qω ∈ S3 such that exp(ω) = qω . Therefore we denote R(qω) = Rω to define the mapping between

quaternion qω and rotation matrix Rω which correponding to the same vector ω, and obviously get

log(qω) = Log(R(qω))

which means the minimal parameterization of a quaterion q ∈ S3 is a vector ω ∈ R3 as manifold SO(3) does.

Special Euclidian Group, SE(3) Similarly, a transformation T in 3D space consists with a rotation matrix

R ∈ SO(3) and a translation vector t ∈ R3, i.e. T =

 R t

0 1


4×4

. Those transformations coincide with general

matrix multiplication and inversion form the Special Euclidian Group SE(3)
.
= {T =

 R t

0 1


4×4

: R ∈
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SO(3), t ∈ R3}. Since the DoF of a transformation T is 6, we can also define the hat operator for a vector

ξ = {ω, ρ}T ∈ R6 as

ξ∧ =

 ω∧ ρ

0 0

 ∈ se(3)

with se(3) is the Lie Algebra of SE(3). On the vice verse, we can define the vee operator mapping a matrix

S ∈ se(3) to a vector ξ ∈ R6 as S∨ = ξ if ξ∧ = S. Given the exponential map and log map [4] :

exp(S) = T ∈ SE(3)

log(T ) = S ∈ se(3)

We can also form the exponential map and log map between a vector ξ ∈ R6 and a transformation matrix T ∈ SE(3)

in the following:
Exp(ξ) = exp(ξ∧) = T ∈ SE(3)

Log(T ) = log(T )∨ = ξ ∈ R6

For a small vector δξ ∈ R6 we have

Exp(δξ) ≈ I + (δξ)∧

II. POINT REPROJECTION FACTOR

According to the point re-projection error, we have:

ρij = (pi − pi
′
) ∈ R2

with pi = (pui , p
v
i ) is a pixel coordinates in the image plane, pi

′
is the back-projected pixel coordinates by re-

projecting a 3D point wPi = (x, y, z) to a frame with camera pose T (ξj) =

Rj tj

0 1

 as:

pi
′

=

u′
v
′

 =

fu 0 cu

0 fv cv



Px

Pz

Py

Pz

1

 ,

Px

Py

Pz

1

 =

Rj tj

0 1



x

y

z

1



⇒ ∂pi
′

∂(Px, Py, Pz)
=

fu 0 cu

0 fv cv




1
Pz

0 − Px

Pz
2

0 1
Pz

− Py

Pz
2

0 0 0

 (2)

⇒ ∂(Px, Py, Pz)

∂(x, y, z)
= Rj (3)

⇒ ∂(Px, Py, Pz, 1)

∂ξj
= lim
δξj→0

Exp(δξj)Exp(ξj)


x

y

z

1

− Exp(ξj)

x

y

z

1


δξj

≈ lim
δξj→0

(I + δξj
∧)Exp(ξj)


x

y

z

1

− Exp(ξj)

x

y

z

1


δξj
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= lim
δξj→0

δξj
∧

Rj tj

0 1



x

y

z

1


δξj

= lim
δξj→0

δωj∧ δρj

0 0

Rj tj

0 1



x

y

z

1


δξj = (δωj δρj)

=


I −bRj


x

y

z

+ tjc×

0 0

 =

I −bRjwPi + tjc×
0 0



⇒ ∂(Px, Py, Pz)

ξj
=
[
I −bRjwPi + tjc×

]
3×6

(4)

Combining (2), (3) and (4) we have:

∂ρij
∂wPi

=
∂ρij
∂pi

′

∂pi
′

∂(Px, Py, Pz)

∂(Px, Py, Pz)

∂(x, y, z)
= −

fu 0 cu

0 fv cv




1
Pz

0 − Px

Pz
2

0 1
Pz

− Py

Pz
2

0 0 0

Rj

∂ρij
∂ξj

=
∂ρij
∂pi

′

∂pi
′

∂(Px, Py, Pz)

∂(Px, Py, Pz)

∂ξj
= −

fu 0 cu

0 fv cv




1
Pz

0 − Px

Pz
2

0 1
Pz

− Py

Pz
2

0 0 0

[I −bRjwPi + tjc×
] (5)

III. LINE REPROJECTION FACTOR

3D Plücker Line Representation. For a detected line segment, we use the Plücker coordinates [5] to represent

its 3D Line landmark. Suppose a 3D line consists of two spatial endpoints PT ∼ (P̄T | p) and QT ∼ (Q̄T | q),

the Plücker coordinates can be formulated as:

L =

n
v

 =

 P̄ × Q̄

pQ̄− qP̄

 ∈ R6

which is a 6D vector consisting of n ∈ R3 and v ∈ R3. n is the normal vector of the plane determined by the line

and the origin. v is the direction vector of the line. The distance from the origin to the line is d = |n|
|v| .

Since the degree of freedom of a 3D line is only four, so the Plücker coordinates L ∈ R6 is overparametered.

To make the Bundle Adjustment numerical accurate, we adopt the orthonormal representation [5] as the minimun

parameter for a 3D line. The orthonormal representation (U W ) ∈ SO(3) × SO(2) can be obtained from the

Plücker coordinates:

L = [n | v] = [
n

|n|
v

|v|
n× v
|n× v|

]


|n| 0

0 |v|

0 0

 ∼ U(Θ)W (ρ)

U(Θ) = [
n

|n|
v

|v|
n× v
|n× v|

]

W (ρ) =

ω1 −ω2

ω2 ω1

 , σ = [|n| |v|], [ω1 ω2] =
σ

|σ|

Following the orthonormal representation, we can use a four dimension vector φ = [Θ ρ] ∈ R4 as the minimum

parameters during the Bundle Adjustment for each 3D line. Given a small perturbation δφ = [δΘ δρ], the four
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Fig. 1. A 3D line landmark Li
w is re-projected onto the image plane yielding a 2D line li (left), the error between the re-projected line li and

the matched line segment l
′
i consists of two distances from the endpoints to the line li (right).

parameters can be updated as, φ̂ = [Θ̂ ρ̂] = δφ � φ with U(Θ̂) = U(δΘ)U(φ) and W (ρ̂) = W (δρ)W (ρ). Note

that the orthonormal representation of each 3D line is only used when performing Bundle Adjustment, the Plücker

coordinate is maintained in other steps due to its convenience in camera projection, endpoints trimming, and line

triangulation [1].

3D Line Projection. Consider a 3D line Lw in the world coordinate, we can project Lw to a image plane

with camera pose T cw ∈ SE(3) and obtain a 2D line l as illustrated in Fig 1. Suppose the intrinsic parameters

K = [fu, fv, cu, cv] is known and the camera pose T cw denote the rigid transformation from the world coordinate

to the camera coordinate, which consist of a rotation matrix Rcw ∈ SO(3) and translation vector tcw ∈ R3, we can

first transform the 3D line Lw from the world coordinate to the camera coordinate yeilding Lc:

T cw =

Rcw tcw

0 1

 ∈ SE(3)

Lc =

nc
vc

 = Hc
wLw =

Rcw btcwc×Rcw
0 Rcw

nw
vw


which b.c× denotes the skew-symmetric matrix of a vector. Then the projected line l can be obtained using:

l = Knc =


fv 0 0

0 fu 0

−fvcu −fucv fufv

nc =


l1

l2

l3

 ∈ R3

According to the definition of γij = [ li
T pi
′

√
l1i

2+l2i
2

li
T qi
′

√
l1i

2+l2i
2
]T ∈ R2 with li = [l1i l2i l3i ]

T ∈ R3, pi
′

=

[p1
i

′

p2
i

′

p3
i

′

]T ∈ R3 and qi
′

= [q1
i

′

q2
i

′

q3
i

′

] ∈ R3, we have:
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∂γij
∂li

=
1√

l1i
2

+ l2i
2

p1
i

′

− l1i li
T pi
′

l1i
2+l2i

2 p2
i

′

− l2i li
T pi
′

l1i
2+l2i

2 1

q1
i

′

− l1i li
T qi
′

l1i
2+l2i

2 q2
i

′

− l2i li
T qi
′

l1i
2+l2i

2 1


2×3

(6)

Since li = Knc, i.e.

li = [K 0]3×6

nc
vc

 = [K 0]3×6Lc, K =


fv 0 0

0 fu 0

−fvcu −fucv fufv


⇒ ∂li

∂Lc
= [K 0]3×6 (7)

Since Lc = Hc
wLw, i.e.

Lc = Hc
wLw =

Rcw btcwc×Rcw
0 Rcw

Lw
⇒ ∂Lc

∂Lw
=

Rcw btcwc×Rcw
0 Rcw


6×6

(8)

According to the orthonormal representation a 3D Line Lw has a minimum parameters φ = [Θ ρ] ∈ R4 with

Lw(φ) =

nw(φ)

vw(φ)

 =

ω1u1

ω2u2


U(Θ) = [u1 u2 u3] ∈ SO(3),W (ρ) =

ω1 −ω2

ω2 ω1


2×2

If φ has a small perturbation δφ = [δΘ δρ] then Lw(φ+ δφ) can be computed as :

Lw(φ+ δφ) =

nw(φ+ δφ)

vw(φ+ δφ)

 =

ω1
′
u1
′

ω2
′
u2
′


U(Θ+δΘ) = Exp(δΘ)U(Θ) = [u1

′
u2
′
u3
′
],W (ρ+δρ) =

ω1
′ −ω2

′

ω2
′

ω1
′


2×2

=

cos(δρ) −sin(δρ)

sin(δρ) cos(δρ)

ω1 −ω2

ω2 ω1


2×2

⇒ ∂Lw
∂φ

= lim
δφ→0

Lw(φ+ δφ)− Lw(φ)

δφ
=

−bω1u1c× −ω2u1

−bω2u2c× ω1u2


6×4

(9)

Similarly if the minimum parameter ξj of Tj(ξj) has a small perturbation δξj = [δωj δρj ], then Tj(ξj) is updated

as:

Tj(ξj + δξj) = Exp(δξj)Exp(ξj) ≈

Exp(δωj) δρj

0 1

Rj tj

0 1

 =

Exp(δωj)Rj δρj + Exp(δωj)tj

0 1


⇒ Hc

w(ξj + δξj) ≈

Exp(δωj)Rj bδρj + Exp(δωj)tjc×Exp(δωj)Rj
0 Exp(δωj)Rj
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⇒ Lc(ξj + δξj) = Hc
w(ξj + δξj)Lw ≈

Exp(δωj)Rj bδρj + Exp(δωj)tjc×Exp(δωj)Rj
0 Exp(δωj)Rj

nw
vw


≈

(I + bδωjc×)Rj bδρj + (I + bδωjc×)tjc×(I + bδωjc×)Rj

0 (I + bδωjc×)Rj

nw
vw


≈

Rj btjc×Rj
0 Rj

nw
vw

+

bδωjc×Rj bδρjc×Rj + bbδωjc×tjc×Rj + btjc×bδωjc×Rj
0 bδωjc×Rj

nw
vw


≈ Lc(ξj) +

bδωjc×Rjnw + bδρjc×Rjvw + bbδωjc×tjc×Rjvw + btjc×bδωjc×Rjvw
bδωjc×Rjvw


≈ Lc(ξj) +

−bRjnwc×δωj − bRjvwc×δρj − bbtjc×Rjvwc×δωj
−bRjvwc×δωj


= Lc(ξj) +

−bRjnwc× − bbtjc×Rjvwc× −bRjvwc×
−bRjnwc×

δωj
δρj



⇒ ∂Lc
∂ξj

= lim
δξj→0

Lc(ξj + δξj)− Lc(ξj)
δξj

=

−bRjnwc× − bbtjc×Rjvwc× −bRjvwc×
−bRjvwc× 0


6×6

(10)

Combining (6),(7),(8) and (9) we get:

∂γij
∂φi

=
∂γij
∂li

∂li
∂Lc

∂Lc
∂Lw

∂Lw
∂φi

=
1√

l1i
2

+ l2i
2

p1
i

′

− l1i li
T pi
′

l1i
2+l2i

2 p2
i

′

− l2i li
T pi
′

l1i
2+l2i

2 1

q1
i

′

− l1i li
T qi
′

l1i
2+l2i

2 q2
i

′

− l2i li
T qi
′

l1i
2+l2i

2 1

 [K 0]

Rcw btcwc×Rcw
0 Rcw

−bω1u1c× −ω2u1

−bω2u2c× ω1u2

 (11)

Combining (6),(7),(8) and (10) we get:

∂γij
∂ξj

=
∂γij
∂li

∂li
∂Lc

∂Lc
∂ξj

=
1√

l1i
2

+ l2i
2

p1
i

′

− l1i li
T pi
′

l1i
2+l2i

2 p2
i

′

− l2i li
T pi
′

l1i
2+l2i

2 1

q1
i

′

− l1i li
T qi
′

l1i
2+l2i

2 q2
i

′

− l2i li
T qi
′

l1i
2+l2i

2 1

 [K 0]

−bRjnwc× − bbtjc×Rjvwc× −bRjvwc×
−bRjvwc× 0

 (12)

IV. PLANE REPROJECTION FACTOR

We adopt a quaternion q ∈ S3 as the minimal parametrization of a plane π [3]. Given a camera pose T cw, we

can transform a 3D Euclidian point pw in the world frame to a point pc in the camera frame, i.e. pc = T cwpw. The

plane πc in the camera frame can also be transformed into a plane πw in the world frame using q(πw) = T cw
T q(πc).

This means we can reproject a plane q(πc) in the camera frame into the world frame as 3D point does. During the

pose estimation, when a plane q(πc) is detected in the current frame with camera pose T cw which correspondes to a

plane landmak plane q(πw) in the world frame, we can use the above log map [3] to measure the pose estimation

error as

e = log(q((T cw)T q(πc))⊕ q(πw)−1)
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this is called the plane reprojection error. Since the camera pose T cw and plane landmark q(πw) is to be estimated,

and the minimal parameterizations for T cw and q(πw) are ξ ∈ R6 and ω ∈ R3 separately, the plane reprojection

error is actually the function of ξ and ω, i.e.

e = E(ξ, ω) = log(q((T cw(ξ))T q(πc))⊕ q(ω)−1)

let denote q(πc) as q(ω̂) then

e = E(ξ, ω) = log(q((T cw(ξ))T q(q(ω̂)))⊕ q(ω)−1)

In the following we given a detailed deviration of plane reprojection error fuction E(ξ, ω)’s Jacobian matrix

J = ∂E(ξ,ω)
∂(ξ,ω) by computing the ∂E(ξ,ω)

∂ξ and ∂E(ξ,ω)
∂ω separately, which is a 3× 9 dementional matrix.

A. Derivation of ∂E(ξ,ω)
∂ξ

Let denote:

y(ξ) = T cw(ξ)
T
q(ω̂) ∈ R4

φ(ξ) = q(y(ξ)) =
y(ξ)

|y(ξ)|
∈ S3

u = log(φ(ξ)) ∈ R3

Then we have

E(ξ, ω) = log(exp(u)⊕ exp(ω)−1)

According the derivation chain rule we have:

∂E(ξ, ω)

∂ξ
=
∂E

∂u

∂u

∂φ

∂φ

∂y

∂y

∂ξ
(13)

∂E

∂u
=
log(exp(δu)⊕ exp(u)⊕ exp(ω)−1)− log(exp(u)⊕ exp(ω)−1)

δu

(exp(β)
.
= exp(u)⊕ exp(ω)−1)

=
log(exp(δu)⊕ exp(β))− log(exp(β))

δu

=
Jl(β)−1δu+ β − β

δu
(BCH formula)

= Jl(β)−1

∂u

∂φ
=

∂ 2∗cos−1(φ4)
|(φ1,φ2,φ3)|


φ1

φ2

φ3


∂(φ1, φ2, φ3, φ4)

(φ =


φ1

φ2

φ3

φ4

 =

 φv ∈ R3

φ4

)

=

(
2cos−1(φ4)
|φv| I3×3 − 2cos−1(φ4)

|q|
3
2

φvφv
T 2cos−1(φ4)√

1−φ4
2
φv

)
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∂φ

∂y
=
∂ y
|y|

∂y
=

1

|y|
I4×4 −

1

|y| 32
yyT (y =


y1

y2

y3

y4

 ∈ R
4)

∂y

∂ξ
=

(Exp(δξ)Exp(ξ))T q(ω̂)− Exp(ξ)T q(ω̂)

δξ

=
Exp(ξ)TExp(δξ)T q(ω̂)− Exp(ξ)T q(ω̂)

δξ

≈ Exp(ξ)T (I + δξ∧)T q(ω̂)− Exp(ξ)T q(ω̂)

δξ

=
Exp(ξ)T δξ∧

T
q(ω̂)

δξ

=

 RT 0

tT 1

 δφ∧
T

0

δρT 0

 qω̂v ∈ R3

qω̂4


δξ = (δφ δρ)T

=

 RT δφ∧
T
qω̂v

tT δφ∧
T
qω̂v + δρT qω̂v


δξ = (δφ δρ)T

since ω∧
T

= −ω∧, ω∧a = −a∧ω

=

 RT qω̂v
∧
δφ

tT qω̂v
∧
δφ+ qω̂v

T
δρ


δξ = (δφ δρ)T

=

 RT qω̂v
∧

0

tT qω̂v
∧

qω̂v
T


B. Derivation of ∂E(ξ,ω)

∂ω

∂E(ξ, ω)

∂ω
=
log(q(T cw

T q(ω̂))⊕ (q(δω)⊕ q(ω))−1)− log(q(T cw
T q(ω̂))⊕ q(ω)−1)

δω

=
log(q(T cw

T q(ω̂))⊕ q(ω)−1 ⊕ q(δω)−1)− log(q(T cw
T q(ω̂))⊕ q(ω)−1)

δω

let exp(u) = q(T cw
T q(ω̂))⊕ q(ω)−1

=
log(exp(u)⊕ exp(δω)−1 − log(exp(u)))

δω

=
log(exp(u)⊕ exp(−δω)− log(exp(u)))

δω

≈ Jr(u)
−1

(−δω) + u− u
δω

(BCH formula)

= −Jr(u)
−1
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