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GANG: Geometrically-Aligned Neural Gaussians
for Efficient and Realistic Relighting
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Abstract—Efficient and realistic relighting of complex scenes with unknown illumination remains a crucial but challenging task. Recent
advancements in 3D Gaussian Splatting (3DGS) have shown impressive object-level relighting. However, they still struggle with complex
real-world scenes, mainly due to the challenges of accurately decoupling intricate geometry, materials, and lighting using concise 3D
Gaussian primitives. In this paper, we propose a new Geometrically-Aligned Neural Gaussian Splatting (GANG) method, which performs
efficient physically based rendering (PBR) directly on anchor-based relightable neural Gaussians. Our key idea is to regularize the
decoded neural Gaussians geometrically aligned with the latent signed distance field (SDF) surface spawned from anchors using a
differentiable implicit indicator function (IIF) solver. It brings effective geometric association to accurate decoupling of materials and
lighting for efficient and realistic relightin of complex scenes. Furthermore, we propose a locally consistent geometry regularization to
guide more concise neural Gaussian learning with a hybrid lighting model, which combines position-learnable spherical Gaussians
(SGs) and an environment map, allowing accurate modeling of both local and global illumination. Experimental results on public
datasets demonstrate that GANG consistently outperforms previous PBR methods in material decomposition and relighting quality,
while representing complex scenes with concise anchors. To the best of our knowledge, GANG is a new state-of-the-art 3DGS method

for realistic relighting, enabling efficient rendering and flexible editing materials and illumination, especially for complex scenes.

Index Terms—Neural Gaussian splatting; Adaptive geometric alignment; Hybrid lighting model; Realistic relighting

1 INTRODUCTION

Realistic relighting is an important topic in the computer
vision and computer graphics communities. It has been
widely applied in virtual reality (VR) and augmented reality
(AR) to deliver immersive experiences [1], [2]. The key task
of image relighting is to infer the intrinsic properties (geom-
etry, physical materials, and lighting) of a scene captured
by one or more images. However, accurately decomposing
these properties and achieving high-fidelity relighting re-
mains challenging, especially in complex scenes with intri-
cate geometry, materials, and unknown illumination.
Recently, some methods have attempted to alleviate this
ill-posed property decomposition problem using neural ra-
diance fields (NeRF) [3], employing techniques such as ten-
sor decomposition [4], illumination decomposition [5], [6],
and semantic priors [7]. However, NeRF-based approaches
require significant computational complexity, causing non-
negligible latency for relighting. Taking advantage of ef-
ficient 3D Gaussian splatting (3DGS) [8], recent methods
have explored intrinsic decomposition in Gaussian splatting
by assigning additional learnable parameters to each Gaus-
sian primitive for relighting. [9], [10], [11], [12]. However,
this per-primitive strategy inevitably introduces redundant
Gaussians, leading to increased storage overhead. More
importantly, in complex scene relighting, these methods
often disregard the principle of local material consistency,
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whereby real-world objects typically exhibit smoothly vary-
ing or homogeneous properties within local regions. Inde-
pendent optimization of individual Gaussians ignores this
inherent regularity, exacerbating the entanglement between
material representation and illumination estimation, and
ultimately degrading relighting quality in complex scenes.

For complex scenes, anchor-based methods [13], [14]
have shown potential to balance reconstruction quality and
rendering efficiency. However, in these approaches, the
neural Gaussians are often decoded independently, lacking
an effective geometric association with the anchors. This
induces geometric uncertainty with disordered spatial or-
ganization, leading to non-compact reconstruction for the
scene. Such uncertainty further degrades the accuracy of
geometry, material, and lighting decomposition, often pro-
ducing floaters and other artifacts in relighting tasks.

In this paper, we propose a novel Geometrically-Aligned
Neural Gaussian Splatting, called GANG, which can accu-
rately decouple the geometry, materials, and lighting for
complex scenes using a concise anchor-based neural Gaus-
sian representation, thus achieving efficient and realistic
relighting. Inspired by recent anchor-based neural Gaus-
sians [13], [14], our GANG adopts a similar anchor-based
structure but predicts the anchor feature into relightable
3D Gaussian primitives using a lightweight network, thus
leading to a new anchor-based relightable neural Gaussian
representation. More importantly, we propose to regularize
the neural Gaussians to be geometrically aligned with the
latent SDF surface that is spawned by the anchors using
a differentiable implicit indicator function (IIF) solver. It
introduces an effective geometric association between an-
chors and their predicted neural Gaussians. Besides, we
perform Physically Based Rendering (PBR) directly on the



VOL. XX, NO. X, 2025

Fig. 1. Efficient and realistic relighting of complex scenes by Geometrically-Aligned Neural Gaussians (GANG), which more accurately decomposes
materials from unknown illumination scenes, and more efficiently performs more realistic relighting than state-of-the-art PBR-based methods.

neural Gaussians, preserving the realistic rendering quality
and efficient rendering speed simultaneously. Moreover,
we further regularize the neural Gaussians spawned from
the same anchor as a local plane with locally consistent
geometry and material properties, where local geometric
structures can be naturally perceived with the stellate neu-
ral representation. To simulate unknown illumination, we
propose a hybrid lighting representation that combines
position-learnable spherical Gaussians (SGs) with a cube-
map environment map, and build up a highly accurate
decomposition of geometry, materials, and lighting for the
anchor-based relightable neural Gaussian learning. Benefit-
ing from these components, our GANG achieves precise
scene decomposition, efficient and realistic relighting, while
enabling highly freeform material and lighting editing in a
very efficient manner.

To evaluate the effectiveness of the proposed GANG,
we conducted extensive experiments comparing it with
the baseline of novel view synthesis (NVS) (3DGS [8],
2DGS [15], OCtree-GS [14]) and state-of-the-art PBR-based
relightable Gaussian methods (R3DGS [11], Gaussian-
Shader [10], GS-IR [9] on three public datasets (Mip-NeRF
360 [16], Deep T&T [17], [18], and TensoIR Synthetic [4]).
The experimental results show that our GANG can achieve
superior performance in novel view synthesis, material
decomposition, and relighting compared to previous PBR-
based methods. Specifically, our GANG achieves 1.5dB
higher relighting PSNR and 2dB better albedo decompo-
sition than R3DGS and GS-IR, along with a more 8dB
relighting gain over GSShader. For NVS task, our GANG
also achieves better rendering quality with about 3dB PSNR
accuracy than all PBR-based methods. Furthermore, GANG
demonstrates outstanding storage and rendering efficiency.
It only requires half the training time of R3DG, but achieves
a rendering speed of 5x faster and a storage cost of 1/25.

In summary, GANG establishes a novel Gaussian-based
relightable rendering method that delivers efficient and
realistic rendering, especially aimed at complex scenes.

1) We design an adaptive geometry alignment opti-
mization strategy that associates the anchor in the implicit

space with the geometric distribution of predicted neural
Gaussians, enabling compact and concise scene geometry
representation.

2) We propose a local consistency optimization strategy
that refines local geometry by constraining surface normals
and distances to camera, while enforcing consistent Gaus-
sian material properties to achieve smooth distributions.

3) We construct a hybrid lighting representation that
combines the learnable spherical Gaussians with a learnable
environment map, enabling accurate modeling of both local
and global illumination under unknown lighting conditions
and improving the accuracy of material decomposition.

2 RELATED WORK
2.1 Scene Representation

A faithful 3D reconstruction of a scene is fundamental for its
relighting. Recently, implicit neural radiance fields (NeRF)
and its variants [3], [19], [20], [21] have achieved significant
success but require substantial computational resources. Al-
though several variants have reduced the training time from
days to hours by introducing voxel grids [22], tri-planes
[23], or hash encoding [24], the expensive sample queries for
volume rendering still result in noticeable rendering latency.
More recently, 3DGS [8] has gained extensive attention,
enabling efficient training and rendering, inspiring a wide
range of subsequent methods and applications [25]. To
improve the quality of geometric reconstruction, subsequent
work has introduced various improvements. These include
normal priors [26], opacity fields [27], optimized pruning
strategies [28], unite SDF [29], introduced constraints [30],
and flattened 3D ellipsoids to 2D ellipses [15]. However,
these methods bear the high overhead of storing million of
Gaussian primitives for real scene. Although recent anchor-
based representations have demonstrated significant storage
reduction by decoding Gaussian properties from latent fea-
tures via tiny MLPs [13], [14]. These methods still lack an
effective geometric association between anchors and their
spawned neural Gaussians for compact Gaussian learning.
In contrast, our GANG adopts a similar anchor-based
structure but uses a differentiable IIF solver to introduce
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Fig. 2. The pipeline of GANG. Given a set of complex scene images in an uncontrolled environment, we propose to reconstruct the complex scene
using anchor-based relightable neural Gaussians, where the anchors (red dot) and neural Guasisans((a), (Sec. 3.1)) are geometrically aligned via
a IIF solver (Sec. 3.2). A hybrid lighting model is proposed to accurately simulate environmental lighting both globally and locally (Sec. 3.3)(c).
Benefiting from the stellate representation, we treat neural Gaussians spawned from the same anchor as forming a local plane and optimize
them with locally consistent geometric and material regularization (Sec. 3.4). Furthermore, we employ a two-stage learning strategy (Sec. 3.5) to
progressively refine the representation, enabling efficient and realistic relighting.

an effective geometric association between anchors and
their predicted neural Gaussians, leading to a geometrically
aligned relightable anchor-based neural Gaussian represen-
tation. Moreover, we propose using local consistency to
ensure smooth transitions among primitives, which further
improve the compactness of neural Gaussian reconstruction.

2.2 Neural Relighting

Decoupling materials and lighting from multi-view images
is challenging due to their intrinsic coupling complexity.
Previous methods relied on controllable lighting conditions
to simplify decomposition problems, such as fixing the light-
ing and focusing on rotating objects [31], using a flashlight
from a mobile phone [32], or using known or calibrated
lighting [33]. However, these approaches are restricted to
small objects with special acquisition conditions, limiting
their applicability to diverse real-world scenes. To address
these limitations, some neural representations have been
proposed to model lighting and view-dependent material
properties, such as single-scattering participating media
lighting model [34], spherical Gaussians (SG) [35], learnable
environment maps [36], incident lights [37] and surface in-
tersection fields [38]. However, these methods require large
computational resources and hours of training.

Recently, with the rise of 3DGS, various methods have
explored efficient relighting with different lighting models.
GS? [39] decomposes materials under known lighting con-
ditions, generating realistic shadows. GS-Phong [40] applies
the Blinn-Phong model [41] to decompose scenes into mate-
rials. PRTGS [42] employs precomputed radiance transfer
to improve real-time rendering under dynamic lighting.
GlossyGS [43] integrates material priors and normal map
prefiltering to accurately reconstruct high-fidelity geome-
try and materials of glossy objects. Other methods use
the bidirectional reflection distribution function (BRDF) to
model the scene, such as R3DG [11], GSShader [10], GS-
IR [9], and GS-ID [12]. However, the additional learnable
material parameters for each Gaussian greatly increase the
storage overhead. The main limitation of these methods is

their focus on relighting or shading small objects only. The
lack of relighting design for complex scenes makes these
methods ineffective in relighting scenes. Furthermore, the
latest Guassian ray-tracers [44], [45], [46] simulate advanced
secondary lighting effects for remarkable rendering quality.
However, these methods often cost huge computations for
ray tracing even at the object level [45], which would not
be suitable for efficient relightable rendering for complex
scenes such as ours.

Our GANG directly performs PBR directly on anchor-
based neural Gaussian primitives, avoiding G-buffer ren-
dering [9], [12] and thereby preserving both realism and
efficiency. Moreover, our hybrid lighting model combines
SGs and a learnable environment map to effectively simu-
late global and local lighting in unknown scenes.

3 METHOD

Given multi-view images of a complex scene captured in
an uncontrolled environment with unknown illumination,
our approach aims to reconstruct the scene using concise
geometrically aligned neural Gaussians (GANG), while ac-
curately decoupling the materials and lighting of the scene
on the level of 3D Gaussian primitives, thus enabling effi-
cient and realistic relighting. Fig. 2 shows the main pipeline
of our approach.

3.1 Relightable Neural Gaussian

Inspired by Scaffold-GS [13] and Octree-GS [14], we propose
a new anchor-based relightable Gaussian representation by
forcing the neural Gaussians geometrically aligned with the
latent SDF surface from anchors. We perform PBR directly
on the neural Gaussians (with PBR color rendering and im-
age splatting), thus enabling efficient and realistic relighting
simultaneously.

Anchor-based Relightable Neural Gaussians. Given a
set of unorganized RGB images {I;|i = 1,..., N} as input
with image number N, we first use COLMAP [47] to gen-
erate a sparse point cloud P, and estimate the camera
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Fig. 3. An illustration of the normal definition. The learnable normal in
R3DG [11] lacks a clear physical interpretation (a). The shortest-axis
normal provides a well-defined direction but still preserves the Gaus-
sian volume effect (b). The introduced flattening loss (c) helps reduce
this volume influence, while the proposed local constraints (d) enforce
consistent orientations of the constrained local normals, producing both
a smooth and planar effect on the representation of local geometry.

parameters. P, is divided into voxels following Octree-
GS [14], and the anchors V are defined as a set of learnable
intrinsic properties, with positions initialized to the centroid
of the voxels. For each anchor v € V, the intrinsic properties
are v = {2y, ly, 70, fu,00}, Where z,,l, € R? are the posi-
tion and factor of scale, , € R* is the rotation represented
by a set of quaternions, f, € R32 is a context feature, and
0, € RE*3 is an offset.

Then the multi-head decoder I’ regresses each anchor
v to a set of K relightable Gaussian primitives {gi|k =
1,...,K}. Specifically, each anchor is represented with a
view-dependent latent feature F = {f,,A,,d,}. Here,
A, = |lv — V||2 is the relative viewing distance, and
d, = normalize(v — V.) is the direction of v to the cam-
era position V.. Each neural Gaussian is decoded from
the latent feature F to obtain a set of relightable param-
eters with geometry, appearance, and material as g =
{Wks Sks Qs Ok, iy Akey P, My }. Among them, the position
ur € R3, the scale s, € R3, and the quaternion rotation
qr € R? associated with the covariance, are formulated as

{[1,0, "~7MK—1} =, + {Ov,la ceey OU,K—l} : l'ua
{505 ceey SK—l} = SlngId(FS(‘F)) : lva (1)
{qo; -, g —1} = normalize(Fy(F) - ry).

The other parameters ¢ € {a, ¢k, Ak, pi, My} are directly
decoded by the MLP-based decoders in F', formulated as
¢ = Ay(Fy(F)), where A, is an activation function of the
parameter ¢, Fy is the decoder of ¢, ci, A € R3 are color
and albedo, and ag, px, My € R! are opacity, roughness,
and metallic, respectively.

The anchor point v and the neural Gaussian gj, share
the same normal definition. The normal nj, of gy, is jointly
determined by the scale s, the rotation vector g, and
the viewing direction V,, representing the rotation axis
corresponding to the smallest scale that is aligned with the
viewing direction. It is formulated as

ng = Qik(argming o, 5 Sik),

= )Pk if ngp-V, >0, )
k — g, else ngp - -V, <0.

Here, Q; , is the rotation matrix constructed from the rota-

4

tion vector gy, i denotes the index of the axis corresponding
to the smallest scale in si, and V,, = normalized(u — Ve)
is the unit vector from the primitive position puy to the
camera position V. In Fig. 3, we illustrate the comparison
of normals under different definitions and constraints.

PBR Color Rendering. For each relightable Gaussian
primitive g, we use the PBR technology to calculate its PBR
color ¢'. Specifically, for g located in y with normal n, given
a light intensity L;(w;, 1) along the incident direction w;,
the PBR color ¢’ of g along the view direction w, can be
formulated as

dmwazéumwmmmew«Mw, 3)

where () is the upper hemisphere. Each neural Gaussian
is considered to be a Cook-Torrance microfacet [48]. The
bidirectional reflection distribution function (BRDF) is used
to model the reflection intensity as

A DFG

M); + 4n-w;)(n-w,)’

fr(wiawo) = (1 - (4)
where A, M, p € [0, 1] are albedo, metallic and roughness,
n is normal, D is the normalized distribution function, F is
the Fresnel function, and G is the geometry function. Eq. 3
can be rewritten as ¢’ = ¢, + ¢, where ¢/ is a diffuse term
and ¢, is a specular term,

A
o= =% [ L) n)dus

()
, DFG . 4
c, = /Q —4(n ") (0 wy) L (p, w;) (w; - n)dw;.

Image Splatting. Once the PBR color for each relightable
Gaussian primitive is calculated, we follow the projection
process to splat 3D Gaussian primitives on the 2D image
plane. Same as 3DGS [8], a tile-based rasterizer is used
to splat the color and materials, which efficiently sorts 2D
primitives and employs a-blending in /N-ordered points.

3.2

To spawn compact neural Gaussians, each anchor is best
suited to fit the surface of the scene, and spawns neural
Gaussians along the surface. However, the lack of real-
scene surface priors and weak anchor-Gaussian geometric
association through offest as done by previous works [13],
[14] often lead to discretely spawning neural Gaussians from
the same anchor with excessive distance and anisotropy.
To alleviate this issue, We introduce the Implicit Indicator
Function (IIF) [49] to achieve latent-space surface alignment
between the anchor and the neural Gaussian. By encour-
aging the consistency of their distributions, this association
allows for adaptive geometric correction and leads to more
accurate and consistent geometric alignment.

Specifically, we use position and normal of anchor and
neural Gaussian to describe the geometry of the scene. By
scaling the scene into a unit space and sampling a grid 1287,
the vertices are treated as probes to describe the varying
numbers of anchors and neural Gaussians on a unified scale.
Following IIF [49], we first obtain the uniformly discretized
point field P and normal field V. It is achieved by rasteriz-
ing the points and normals of each Gaussian or anchor onto

Implicit Geometric Alignment
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Fig. 4. An illustration of the multiple spherical Gaussian mixtures. The
initial positions of the SGs are set at the upper vertex of the voxel (a).
After optimization, the positions and properties of the SGs are adaptively
optimized to simulate direct lighting (b) through a distance-weighted
spherical Gaussian mixture (c).

a uniformly sampled voxel grid via differentiable inverse
weighted trilinear interpolation. The spectral method [50]
is applied to reconstruct the latent function from these
discretized fields. For neural Gaussian, the normalized IIF
T, is formulated as

m
T, =
abs (Z},|,_,)

1
I’;L - I;z r=c/’

o= ] % lo=c) o
o[ P

where 7/, is the unnormalized indicator function, go,r(-)
represents a Gaussian smoothing kernel with bandwidth
o and grid resolution r in the spectral domain, ©® is the
element-wise product, ./\7n is the spectral feature of N,
obtained via the Fast Fourier transform (FFT). The IIF of
the anchor Z, is calculated in the same way.

Finally, the adaptive geometric alignment between an-
chor and nural Gaussian is achieved by minimizing the
difference between Z, and Z,,. It is formulated as

1 & . N2
;CH]: = N Z (IT(LZ) — I((ll)) , (7)

i=1

T, =IFFT(Jo,r(Pn) ©

where N is the total number of grid points.

3.3 Hybrid Lighting Rendering

To accurately simulate the real illumination of the scene,
we use a hybrid lighting representation to model incident
lighting L; including global ambient lighting L{™" and local
direct lighting L}7.

Global Ambient Lighting. Global ambient lighting is
represented as a learnable cubemap, allowing the model
to capture spatially varying illumination and efficiently
optimize lighting during training. Following GS-IR [9], we
use the split-sum approximation [51] to handle the integral
in Eq. 3, allowing Eq. 5 to be rewritten in a tractable form as

A
— M)=I5% | = (w; -m),
T

emN/ DFG
€ = o 4(n-w;)(n-w,)

Env BRDF Ko

i~ (1

ldw7/ DLi(,u,wi) l d’LUY;, (8)
Q

Pre-Filtered Env Map ¢

where K., can be precomputed and stored in a lookup
table, while 75“® and 1% denote the embedded diffuse and

5

specular ambient components within the learnable environ-
ment cubemap.

Multiple Spherical Gaussians. We use multiple spheri-
cal Gaussians (SGs) [35], [52], [53] to simulate local direct il-
lumination with additional learnable positions x4, through
a distance-weighted spherical Gaussian mixture. As shown
in Fig. 4 (a), we apply the K-means algorithm to partition the
neural Gaussian into K voxels, where the number of SGs
K, = K? is adaptively determined based on the number of
layers K in the structured grids of the neural Gaussian. The
initial position of an SG is defined as the upper vertex of the
voxel farthest from the clustered Gaussians. The local direct
lighting L:“ takes a mixture spherical function

K
L% (w;) =Y SG(wi: &5, A5, 65),
= ©)

SG(V;€,\,6) = 6eMVETD),

where V € 8% is the input, §; € R3, A € R,§; € R?
denotes the lobe axis, the amplitude, and the sharpness of
j-th SG, respectively. According to Eq. 5, the PBR color of
SG is rewritten as

K, K
G = - S WS, e =Y WSGL,

Jj=1 Jj=1

(10)
where SG(w; ;) is the diffuse term with direction w; ; from
the j-th SG to the neural Gaussian, and SG ; is the specular
term. As shown in Fig. 4 (c), W; = e~ % is a distance weight,
where d is the distance from x4 to ii. The overall rendering
color of g in the hybrid lighting model is formulated as

i) = e 4 M e b )

3.4 Local Geometric-Aware Regularization

A faithful Gaussian distribution is crucial to achieve high-
quality relighting. However, unordered Gaussian primitives
often make it challenging to reconstruct a compact 3D Gaus-
sian representation of a complex scene, especially for neural
Gaussian representations [13], [14] like ours. As shown in
Fig. 5, we further propose geometric-aware optimization by
employing local geometric and material consistency within
neighbor primitives to mitigate this issue and make the local
transition smoother.

surface

_________
1

1

1

! .

1, distance
| d; €g;
I

1

Fig. 5. Local geometry regularization in the geometry structure of neural
Gaussian primitives (colored gray) spawned from an anchor (colored
red). Using such regularization, the unordered Gaussian primitives (left)
can be effectively adjusted (right) to a smoother local plane (down).
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Fig. 6. Qualitative comparison of the material decomposition and relighting on the TensolR synthetic dataset [4]. The albedo of GSShader [10]
is the diffuse term because it establishes the diffuse and specular reflections for each Gaussian, rather than the BRDF parameters. The material
decomposition by GS-IR [9] is not smooth enough and exhibits artifacts under relighting. In contrast, our method accurately decomposes materials,

is robust to lighting changes, and restores smooth relighting.

Local Geometric Regularization. Unlike GeoGS [30]
and ST-4DGS [54], which rely on extra KNN queries to
establish neighborhood relations, our method inherently
encodes local structure through the stellate construction
between anchor and neural Gaussians. Specifically, we treat
the local geometric structure of neural Gaussians spawned
from the same anchor as a local plane. This assumption
is satisfied by constraining the local geometric consistency
L1, which considers both the distances to the viewpoint
and the normal directions, and can be formulated as

W, 1
Lo == (Ing 0 — = > nimi;l)
N K- i€(1,K)

JEN

normal term

e 20 Mg = Vel

JEN €K

(12)

distance term

where n; ; is the normal of i-th neural Gaussian spawned
from j-th anchor, w,, = 0.05, and wg = 0.01.

Local Material Regularization. Considering that mate-
rial should remain consistent within the local plane of real-
world scenes, we design a local material regularization to
optimize the continuities in the Gaussian material distribu-
tion. The local material loss L,,,; can be formulated as

1
Loy = N K Z Z |l _mj||2,

JEN €K

(13)

where N is the anchor number, m; ; is one property of
materials in the i-th neural Gaussian spawned from the j-th

anchor, T; is the mean of the local material (m € {4, p, M'}).

3.5 Optimization

During Optimization, we adopt a two-stage optimization
strategy to learn neural Gaussians. In the first stage, scene
geometry is optimized while material and lighting parame-
ters are kept frozen. The loss is defined as

El = Ec + )\n‘cn + )\nlﬁnl + )\fﬁf + )\iif[/HFa

where L. is the photometric loss as 3DGS [8], and £,, is
the global pseudo-normal loss, following 2DGS [15]. It com-
putes normals from the rendered depth and compares them
against the rendered normals. £y = ||min(sl,s2,s3)||; is
the flattening loss of scale as NeuSG [55]. Combined with
the definition of the normal direction in the shortest axis,
this flattening loss helps flatten the local Gaussian distribu-
tion and alleviates the impact of the Gaussian volume.

In the second stage, we unfroze the material and lighting
parameters and performed PBR rendering. The total loss is
formulated as

Lr = £c+)\n£n+>\nl£nl+)\f£f+)\ml£ml+>\tU‘CTV7 (15)

(14)

where Lry is the total variation (TV) loss in the rendering
materials and the learnable environment image.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. We evaluate the efficiency of the proposed GANG
on two publicly available datasets of complex real-world
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TABLE 1
Quantitative comparison of material decomposition, novel view synthesis, and relighting on the TensolR synthetic dataset [4]. The top block of the
table is the comparison PBR methods, and the bottom block is the ablation comparisons of the core components. local represents local
regularization of geometry and materials. The colors represent first- , second- and third-best . Bold numbers indicate ablation performance
equal to or exceeding the full system.

Nomal Adjusted Albedo Relighting NVS

MAE PSNR SSIM  LPIPS | PSNR SSIM  LPIPS | PSNR SSIM  LPIPS | Time
R3DG [11] 5.469 29.492 0.929 0.107 23.591 0.927 0.067 32.724 0.970 0.034 97 m
GSShader [10] | 5.820 - - - 16.920 0.866 0.107 36.080 0.984 0.026 69 m
GS-IR [9] 5.313 29.887 0.921 0.101 24.134 0.918 0.073 35.277 0.963 0.044 23 m

GS-ID [12] 4.120 30.620 0.940 0.094 - - 36.720 0.977 0.027 -
Ours 3.975 31.871 0.949 0.065 25.751 0.936 0.067 39.790 0.984 0.021 45 m
w/o IIF 4.061 31.726 0.949 0.066 25.540 0.931 0.069 39.496 0.983 0.022 38 m
w/o local 3.896 31.594 0.947 0.067 25.185 0.928 0.071 39.376 0.983 0.024 40m
w/o L1y 3.991 31.625 0.948 0.067 25.448 0.931 0.072 39.072 0.983 0.022 43 m
wfo L, 4.242 31.751 0.947 0.067 24.975 0.931 0.072 38.944 0.982 0.023 41m
w/o SG 4.031 31.548 0.948 0.067 24.814 0.927 0.070 39.693 0.983 0.021 42m

scenes, including the Mip-NeRF 360 [16] and the Depth
T&T composed from the Deep Blending dataset [17] and the
Tanks& Templates dataset [18]. However, the absence of true
values in real scenes on such datasets makes quantitative
comparisons of relighting difficult. Therefore, we conduct
quantitative evaluations of novel view synthesis (NVS) on
real scenes and provide visual comparisons for relighting.
An additional TensoIR synthetic dataset [4] is introduced
for quantitative comparisons of NVS, material decomposi-
tion, and relighting. To prevent CUDA memory overflow,
the Mip-NeRF 360 dataset is downsampled to 1/4 of its
original resolution, while others remain unchanged. Real-
scene datasets are split 7:1 into training and testing sets,
and synthetic datasets follow the default 1:2 configuration.

Metrics. We evaluate rendering quality using PSNR,
Structural Similarity Index (SS5IM), and perceptual similarity
(LPIPS) [56]. The Mean Absolute Error (MAE) is applied to
evaluate the deviation between the rendered and ground-
truth normal on the synthetic dataset. Furthermore, we also
measure storage overhead (Size (MB)), training time (Time
(minute)), and rendering efficiency (FPS).

Training Details. The training takes a total of 40K iter-
ations, with 25K for the first stage and 15K for the second
stage. Anchor densification concludes in the 18K iteration,
and IIF is executed in the first stage after 10K, with 500
iterations executed every 4K. The weight in Ly is set to
Aiif = 0.04 before 20K and 0.01 thereafter. The pseudo-
normal weight is set to A,, = 0.05 after 5k during training.
The local weight is A\,,; = A, = 0.01, and the flatten
weight is Ay = 20. The TV weight is set to Ay, = 0.01.
All experiments are carried out on a single NVIDIA A800
GPU. Please refer to our Suppl for more details.

Comparison methods. We compare our proposed
method with state-of-the-art PBR-based Gaussian methods,
including R3DG [11], GSShader [10], and GS-IR [9]. In
addition, we evaluate some baseline methods for novel view
synthesis (NVS), such as 3DGS [8], 2DGS [15], and Octree-
GS [14]. Some results from the original publications of GS-ID
[12] are reproduced for comparison.

4.2 Evaluation on Synthetic Dataset

Although our method is primarily designed for complex
scene relighting, it also demonstrates strong performance
on the synthetic dataset. For fair comparison, the albedo
results in Tab.1 and Fig.6 adopt the same adjustment strat-
egy as TensoIR [4], R3DG [11], and GSShader [10]. The
color scale ratio between the rendered and ground-truth
albedo is computed across RGB channels and used to adjust
the rendered albedo. However, ground-truth albedo is not
available in real-world scenes. Therefore, unlike previous
work [10], [11], the adjustment of the albedo scale is not
applied during relighting to ensure fairness and consistency
in the process.

As shown in Tab.1, GANG achieves state-of-the-art per-
formance in material decomposition, relighting, and novel
view synthesis (NVS), surpassing all existing PBR-based
methods. In contrast, other methods show notable degra-
dation relative to baseline approaches in NVS (Tab.2). In
addition, GSShader experiences a significant decrease on
relighting, while R3DG exhibits a decline on NVS. GANG
achieves top performance, only matching R3DG in Re-
lighting (LPIPS) and GSShader in NVS (SSIM), while also
attaining a 0.2 improvement in MAE, over 3 dB gain in NVS,
1.2 dB increase in albedo prediction, and surpassing other
methods by more than 1.5 dB in relighting. These results
demonstrate the robustness and effectiveness of GANG
across tasks. It is worth noting that local geometry-aware
regularization causes a slight decline in normal prediction,
likely because the approximate fitting of curved surfaces is
insufficient to capture fine-grained surface details required
for accurate normals. However, this component benefits
other tasks, enhancing overall performance.

As shown in Fig. 6, the normals rendered by R3DG [11]
with learnable parameters appear overly smooth, leading
to the loss of fine relighting details. GSShader [10] produces
distorted normals, and its relighting results are highly sensi-
tive to specular highlights. GS-IR [9] generates normals with
limited accuracy, and its albedo decomposition exhibits poor
disentanglement, thereby introducing relighting artifacts. In
contrast, our method renders normals that are both smooth
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Fig. 7. Qualitative comparison of the novel view synthesis on the Mip-NeRF 360 [16] (bicycle, kitchen) and Deep T&T [17], [18] (train, drjohnson)
datasets. Previous PBR-based methods often fail in view synthesis for real-world scenes, resulting in noticeable blurriness or artifacts. Our method
not only preserves scene details but also accurately restores challenging areas with weak textures and the sky.

TABLE 2
Quantitative comparison of novel view synthesis on three public datasets. The colors represent first- , second- and third-best for the
PBR-based methods. Compared to the baseline, the PBR-based methods exhibit significant quality degradation, while our approach maintains
comparable performance.

Mip-NeRF 360 Deep T&T TensolR Synthetic

PSNR+ SSIM{ LPIPS| | PSNRT SSIM1 LPIPS| | PSNRT SSIM{ LPIPS |
3DGS [8] 29.76 0.891 0.122 26.92 0.881 0.206 41.87 0.989 0.016
2DGS [15] 28.91 0.874 0.155 26.39 0.869 0.237 40.57 0.986 0.022
Octree-GS [14] 29.92 0.890 0.122 27.22 0.885 0.206 41.22 0.988 0.019
R3DG [11] 23.93 0.754 0.256 12.96 0.486 0.646 32.72 0.970 0.034
GSShader [10] 26.70 0.840 0.178 20.54 0.777 0.347 36.08 0.984 0.026
GS-1R [9] 27.00 0.830 0.185 23.76 0.779 0.305 35.28 0.963 0.044
GS-ID [12] 27.19 0.829 0.230 25.92 0.852 0.243 36.72 0.977 0.027
Ours 29.82 0.888 0.129 26.69 0.879 0.223 39.79 0.984 0.021

and accurate, with well-disentangled albedo, resulting in ro-
bust relighting that faithfully captures illumination changes.

4.3 Evaluation on Real-world Datasets

In real-world scenes, we conduct both quantitative and
qualitative evaluations for novel view synthesis, while ren-
dered geometry and relighting are assessed only qualita-
tively due to the absence of ground-truth data.

4.3.1 Comparison on Novel View Synthesis

As reported in Tab.2, our GANG method is competitive
with the baseline methods (3DGS [8], 2DGS [15], Octree-
GS [14]), and achieves the best PSNR, LPIPS and SSIM in
the PBR-based methods (R3DG [11], GSShader [10], GS-IR
[9], GS-ID [12]). The quality of other PBR-based methods

shows a significant degradation, more than about 2dB in
PSNR and 0.05 in SSIM. Specifically, on the Mip-NeRF 360
dataset [16], R3DG [11] experiences a drop of over 6 dB in
PSNR, more than 1.3 decrease in SSIM, and an increase of
over 0.1 in LPIPS. On the Deep T&T dataset [17], [18], the
degradation of R3DG is even more pronounced, with PSNR
dropping by over 14 dB, SSIM by more than 0.4, and LPIPS
increasing by over 0.4. Similarly, GSShader exhibits signif-
icant degradation on the Deep T&T dataset [17], [18], with
PSNR decreasing by over 6 dB, SSIM decreasing by more
than 0.1, and LPIPS rising by over 0.4. Although our method
shows a slight decrease in the quality of view synthesis
compared to baseline (Octree-GS [14]), the degradation is
minimal. On average, PSNR drops by only about 0.3 dB,
SSIM decreases by 0.06, and LPIPS increases by 0.01. This
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Fig. 8. Qualitative comparison of rendered depth and normal on real-world scenes. Our GANG preserves sharp object geometry and accurately
renders thin structures (e.g., small lamps), while simultaneously maintaining high-quality rendering of both curved surfaces and planar regions.

minor drop is primarily due to the inevitable decomposition
approximation errors in PBR-based methods, whereas our
approach still consistently demonstrates significantly supe-
rior performance in complex scenes.

As shown in Fig.7, these PBR-based methods often fail
to preserve fine details in view synthesis (e.g. kitchen)
and struggle with weakly textured scenes (e.g. drJohnson).
R3DG [11] produces severely degraded reconstructions in
outdoor real-world scenes (e.g. train), while GSShader [10]
generates a large number of floaters (e.g. bicycle and dr-
johnson), significantly impairing view quality. GS-IR [9] also
suffers from noticeable artifacts in the synthesized views. In

contrast, our method preserves fine texture details, deliv-
ers a clearer appearance with fewer artifacts, and further
demonstrates state-of-the-art generalizability and stability
across diverse real-world scenes.

4.3.2 Comparison on Geometric Reconstruction

To highlight differences between PBR-based methods, we
assess geometric reconstruction quality through a compara-
tive analysis of their rendered depth and normal. As shown
in Fig.8, R3DG [11] produces an erroneous depth in the out-
door truck scene, while the rendered normals are severely
degraded by floaters in the indoor playroom scene. More
generally, R3DG, GSShader [10], and GS-IR [9] all struggle to
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Fig. 9. Qualitative comparison of relighting on real-world scenes. Our method achieves realistic relighting, with rich texture details, clearer

appearance, and fewer artifacts.

preserve geometric fidelity. Their depth maps often exhibit
distortions, including inaccurate depth ordering and geom-
etry in planar regions, while their normals lack sufficient
accuracy, introducing artifacts that compromise relighting
and view synthesis. These limitations are particularly pro-
nounced on flat surfaces (e.g., tabletops and walls) and in
curved objects, where severe artifacts become evident.

In contrast, our method accurately recovers sharp depth
with correct ordering, and generates clean and well-defined
normals, free of floaters or distortions. It maintains geomet-
ric consistency across both planar surfaces (e.g., tabletops
and walls) and curved objects, enabling faithful reconstruc-
tion of fine structures and delivering reliable geometry for
high-quality relighting and view synthesis.

4.3.3 Comparison on Relighting

As shown in Fig.9, we visualize relighting results for mul-
tiple real-world indoor and outdoor scenes under different
environment maps. Overall, R3DG [11], GSShader [10], and
GS-IR [9] all suffer substantial challenges in maintaining

photorealistic relighting, due to insufficient decoupling of
geometry, material, and lighting.

Under the same experimental settings, R3DG [11] suf-
fers from inaccurate geometric reconstruction and mate-
rial decomposition, leading to relighting outputs that are
misaligned with changes in the environment and exhibit
pronounced color distortions (discussed in detail in the
Suppl). GSShader [10] is highly sensitive to the intensity
of environment map lighting, frequently producing over-
exposed relighting results that are visually inconsistent and
fail to match human perceptual expectations, thus reduc-
ing reality. Additionally, its geometric reconstruction in the
room scene is noticeably distorted, further compromising
relighting quality. Similarly, GS-IR [9] is limited by inaccu-
racies in depth and normals, which result in pronounced
artifacts in varying environment maps. These artifacts are
particularly severe on planar surfaces, such as tabletops
and walls, where accurate geometry is critical for achieving
photorealistic relighting.
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Fig. 10. Visual ablation of key components reveals their impact on normal and albedo fidelity.

TABLE 3
Quantitative comparison of efficiency analyses on three datasets. The
methods in the top block are the baseline of the PBR-based methods in
the second block. Ours-C is the result of the first stage.

Mip-NeRF 360 Deep T&T TensoIR Synthetic
Time FPS  Size | Time FPS  Size | Time FPS Size
3DGS [8] 25 111 571 14 153 479 11 273 31
2DGS [15] 25 91 378 14 131 280 7 243 14
Octree-GS [14] | 25 168 112 18 245 67 12 373 8
Ours-C 35 171 105 28 228 71 23 311 10
R3GS [11] 188 10 3865 | 148 18 1728 | 97 32 287

GSShader [10] | 128 12 302 87 20 123 69 40 19
GS-IR [9] 72 41 2451 | 51 42 1846 | 23 53 174
Ours 87 55 110 65 58 76 45 71 14

TABLE 4
Ablation study of components in NVS on the Deep T& T dataset [17],
[18]. L, is the depth-normal loss, £,,; and L,,,; are local geometry and
material losses, and Env is the learnable environment map.

‘ PSNR SSIM LPIPS ‘ ‘ PSNR SSIM  LPIPS

Full 26.69 0879 0223 | wio L, | 2652 0869 0.236
w/o Lyp | 2643 0875 0225 | w/o Ly | 2631 0875 0.225
wfo L, | 2626 0875 0228 | w/oSG | 2658 0.877 0.223
w/o Lty | 2661 0878 0224 | woEnv | 706 0497 0.579

Our GANG maintains accurate geometric reconstruction
and precise normals on both planar and curved surfaces.
It effectively decouples material properties and lighting,
enabling relighting results to faithfully respond to changes
in environment maps with rich texture details, visually
coherent illumination, and minimal artifacts, even in com-
plex real-world indoor and outdoor scenes. Consequently,
GANG consistently delivers high-quality photorealistic re-
lighting, demonstrating its robustness and effectiveness on
diverse real-world scenes.

4.4 Efficiency Analysis

As reported in the Tab. 3, we evaluate the efficiency of
our two-stage approach in terms of storage and rendering
speed. It shows that our first stage incurs only 10 minutes
of extra training due to IIF and local regularization, while
maintaining a rendering speed and model size comparable
to the baselines. On the Mip-NeRF 360 [16] dataset, our
method achieves the best efficiency, maintaining the same
FPS as the baseline while reducing the model size by about

GT

= Y

w/o l?,nl

w/o TIF

Fig. 11. Visual ablation of the core components in mesh. The mesh is
reconstructed from the rendered depth with the Poisson method [57].

7MB. On Deep T&T [17], [18] and TensoIR synthetic [4],
the model size grows slightly (42 MB) with a moderate
decrease in FPS (10-15%). However, our method remains
consistently more efficient than 3DGS and 2DGS, with only
a slight disadvantage compared to Octree-GS.

In contrast, PBR-based methods generally impose sub-
stantial computational overhead and require significantly
larger model sizes. However, our GANG offers an advan-
tageous trade-off between rendering speed and memory
footprint. Specifically, compared to R3DG [11], GANG cuts
training time by half, reduces storage by 95%, and delivers
3x faster rendering. Against GSShader [10], it requires
only about 80% of the training time, halves storage, and
doubles rendering speed. Compared to GS-IR [9], GANG
requires about 15 extra minutes of training due to additional
10K iterations, extra regularization, and SG-based hybrid
lighting. GANG still achieves far better efficiency since the
storage overhead is only about 1/20 and rendering speed is
substantially higher. Overall, GANG achieves photorealistic
rendering efficiently, striking a favorable balance among
training time, rendering speed, and storage requirements,
and clearly outperforming existing PBR-based methods.

4.5 Ablation Study

To validate the effectiveness of each component, we perform
an ablation study of the proposed method on the Deep T&T
dataset (Tab. 4) and the TensolR synthetic dataset (Tab. 1),
where each component is removed individually to evaluate
its contribution. Furthermore, we visualize the impact of key
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Fig. 12. Application of relighting and material editing. Relighting from a single moving global light with an unknown location (2nd row). By operating
on Gaussian primitives, we can easily achieve controllable editing of BRDF parameters (4th and 5th columns).

components on geometry-material decomposition (Fig.10)
and mesh reconstruction (Fig.11). Obviously, removing any
component will lead to a decrease in the PSNR, indicating
that each component contributes to the entire system and is
conducive to the decomposition of scene content.

Geometry. All proposed geometric optimization strate-
gies consistently demonstrate clear benefits to the overall
quality of the reconstruction. Specifically, the Implicit Indi-
cator Function (IIF) adaptively aligns the geometry with the
underlying scene structure, thereby improving compactness
and producing more faithful surface representations. Local
regularization further refines geometric reconstruction by
enforcing spatial coherence, effectively enhancing smooth-
ness and stability in complex regions. As demonstrated in
Fig. 11 and Fig. 10, the absence of any single component
compromises the integrity of the reconstructed geometry,
producing distortions and inconsistencies that highlight the
essential role of each module in maintaining coherent sur-
face structures. Moreover, the introduced pseudo-normal
loss L,, plays a crucial role in enforcing global consistency
between depth and normal, ensuring coherent scene geom-
etry and improving overall fidelity.

Material. Disentanglement is reinforced by the proposed
consistency and regularization losses, which ensure accu-
rate separation of material properties. Specifically, remov-
ing the local material consistency loss £,,; compromises
decoupling, producing visible albedo artifacts (Fig. 10) and
resulting in a 0.38 dB PSNR drop (Tab. 4), demonstrating its
importance for capturing fine material details. In addition,
total variation (TV) regularization reduces residual albedo
noise and enforces spatial smoothness, further stabilizing
the decomposition and improving the realism of the recon-
structed materials.

Hybrid Lighting. Spherical Gaussians (SGs) enhance the
modeling of imprecise lighting in the global environment
map, which is crucial for accurate material decomposi-
tion. Without SGs, material separation becomes insufficient
(Tab. 1, Fig. 10) and rendering quality is significantly de-
graded (Tab. 4). In our system, most of the lighting energy
is captured by the learnable environment map, representing
the global diffuse component. Omitting the environment
map and using fewer SGs to model scene illumination leads
to substantial deterioration in both material decomposition
and rendering fidelity, as evidenced by a PSNR drop of
approximately 20 dB on the Deep T&T dataset.

4.6 Applications and Limitations

We demonstrate further applications of GANG in Fig.12. Its
parameterized lighting enables precise and flexible control
of both complex multi-light setups and single-light sources,
supporting high-fidelity relighting. Leveraging SAGS [58]
for the semantic segmentation of Gaussian primitives,
GANG allows fine-grained material editing of material pa-
rameters and appearance at the primitive level, including se-
lective modification of albedo, roughness, metallic, or color,
without affecting other regions. These capabilities highlight
the strength of GANG in interactive scene manipulation,
providing controllable and photorealistic results for AR/VR,
content creation, and visual effects.

Despite its advantages, our method has several limi-
tations. We only model the global diffuse reflection and
do not precisely model the specular reflection and mutual
reflection. One solution is to introduce time-consuming ray
tracing, such as IRGS [45], but it may not be suitable for
complex scenes and breaks the balance between quality and
efficiency. Extending GANG to support accurate light inter-
actions in complex scenes, including soft shadows, specular
highlights, and caustics, remains a promising direction. We
leave these improvements for future work.

Please refer to the Suppl and Video for more results.

5 CONCLUSION

This paper presents Geometrically-Aligned Neural Gaus-
sians (GANG) for complex scene relighting. By leveraging
adaptive geometric alignment and efficient design choices,
GANG delivers realistic and efficient relighting, enhancing
the fidelity and compactness of Gaussian representations
while enabling accurate material decomposition with min-
imal memory overhead. Its hybrid lighting model further
facilitates precise decoupling of geometry, materials, and
illumination under unknown lighting conditions. Further-
more, GANG supports flexible scene manipulation, includ-
ing controllable lighting and material editing, while pro-
ducing photorealistic rendering efficiently. Extensive exper-
iments on synthetic and real-world datasets demonstrate
its superiority over existing PBR-based methods in terms
of relighting quality, novel view synthesis, and rendering
efficiency. We envision that GANG provides a robust and
versatile framework that can drive further research and
practical applications in immersive AR/VR, content cre-
ation, and interactive scene editing.
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