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Figure 1. We achieve accurate pose-free neural surface learning with the aid of a novel geometric consistent ray diffusion, i.e., GCRay-
Diffusion, even from sparse view images (left column). Our GCRayDiffusion model formulates the images’ camera poses as neural ray
bundles and provides explicit sampling points generated during the denoiser processing (middle columns) to regularize the triplane-based
SDF learning, achieving accurate surface reconstruction and camera pose estimation simultaneously (right column).

Abstract

Accurate surface reconstruction from unposed images is
crucial for efficient 3D object or scene creation . However,
it remains challenging particularly for the joint camera
pose estimation. Previous approaches have achieved im-
pressive pose-free surface reconstruction results in dense-
view settings but could easily fail for sparse-view scenarios
without sufficient visual overlap. In this paper, we propose a
new technique for pose-free surface reconstruction, which
follows triplane-based signed distance field (SDF) learn-
ing but regularizes the learning by explicit points sampled
from ray-based diffusion of camera pose estimation. Our
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key contribution is a novel Geometric Consistent Ray Diffu-
sion model (GCRayDiffusion), where we represent camera
poses as neural bundle rays and regress the distribution of
noisy rays via a diffusion model. More importantly, we
further condition the denoising process of RGRayDiffusion
using the triplane-based SDF of the entire scene, which
provides effective 3D consistent regularization to get multi-
view consistent camera pose estimation. Finally, we incor-
porate RGRayDiffusion to the triplane-based SDF learning
by introducing on-surface geometric regularization from the
sampling points of the neural bundle rays, which leads
to highly accurate pose-free surface reconstruction results
even for sparse view inputs. Extensive evaluations on public
datasets show that our GCRayDiffusion achieves more ac-
curate camera pose estimation than previous approaches,
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with geometrically more consistent surface reconstruction
results, especially given sparse view inputs.

1. Introduction
3D surface reconstruction from multi-view images has been
a long-standing research topic in computer graphics and vi-
sion communities. It serves as a crucial 3D content cre-
ation tool for various applications such as VR/AR, video
games, and robotics. We have seen significant progress
made from the recent neural surface reconstruction using
deep implicit representation [1, 18, 35, 36], neural radiance
field (NeRF) [20, 33, 46–48, 61], and 3D Gaussian Splat-
ting (3DGS) [21–23, 31, 57]. However, most of these ap-
proaches rely on highly accurate camera pose information
as input for each image and would easily fail given less ac-
curate camera poses like noisy views or unknown camera
poses.

For pose-free surface reconstruction, one traditional so-
lution is to first estimate the camera poses using the
Structure-of-Motion (Sf M) technique [40, 44] and then
perform surface reconstruction according to the estimated
camera poses. However, the vanilla Sf M technique needs
dense viewpoints between images with sufficient overlap
and would cause unsatisfactory pose estimation for sparse
view images with little visual overlap. For robust pose esti-
mation from sparse view images, subsequent works directly
regress the camera pose parameters from wide baseline im-
ages [2, 4, 8, 38, 58], predict the relative pose probability
distributions [6, 25, 65], or use an iterative refinement strat-
egy [43], but the pose estimation quality is still limited. Re-
cent works represent the camera poses as a joint distribution
conditioned on image observations [52] or rays [66] and
regress the camera poses via the denoiser process of diffu-
sion models, achieving impressive camera pose estimation
results. However, such diffusion-aided approaches still rely
on dense feature matching [52] and fail to perform effective
bundle adjustment for sparse view scenarios [66].

On the other hand, some recent works propose to jointly
learn the neural surface representation and camera poses,
leveraging the geometric cues from photometric [7, 26, 32,
56, 62], silhouettes [3, 24, 64], or depth points [55]. How-
ever, those joint learning strategies are only performed in-
dependently across dense input images. Some subsequent
works [16, 19, 26, 32, 51, 54] further explore the extra re-
lations across multiple views to optimize both the neural
surface representation and camera poses, achieving more
accurate neural surface reconstruction results. However,
these approaches still need accurate geometric priors, such
as depth [51] within sufficient overlaps [16] or extra camera
intrinsic information [54]. They could not guarantee ge-
ometrically consistent surface reconstruction quality given
sparse view inputs in many highly freeform applications

with unbounded scenarios.
We propose a new pose-free surface reconstruction ap-

proach, which leverages effective diffusion-based bundle
adjustment to achieve multi-view consistent camera pose
estimation and simultaneously leads to geometric consis-
tent surface reconstruction quality even given sparse view
inputs. Based on a triplane-based SDF learning of an en-
tire scene from multiple images, we incorporate geometric
priors from multi-view consistent camera pose bundle ad-
justment to regularize the neural implicit field learning. In-
spired by the recent ray-based camera parametrization [66],
we introduce a new neural bundle ray representation to
over-parameterize camera poses but with an extra depth at-
tribution. Leveraging the depth information, we can trace
the end points of the neural bundle rays, which can serve
as the explicit sampling points of the on-surface geome-
try, thus enabling a differentiable connection between the
camera pose and neural implicit field representation. More
importantly, we build a Geometric Consistent Ray Diffu-
sion (GCRayDiffusion) model to regress the noisy rays,
conditioned on the triplane-based SDF of the entire scene
for multi-view consistent camera pose estimation. Finally,
we incorporate the denoiser process of GCRayDiffusion
to the triplane-based SDF learning by leveraging the on-
surface geometry regularization from the sampling points
of the neural bundle rays. Our approach leads to multi-view
consistent camera pose estimation and geometric consistent
surface reconstruction simultaneously, as shown in Fig. 1.

To evaluate the effectiveness, we perform extensive eval-
uations of our approach on publicly released datasets, such
as the Objaverse dataset [10] and the Google Scanned
Object (GSO) [12] dataset, by comparing with state-
of-the-art camera pose estimation approaches, includ-
ing COLMAP [40], RelPose++ [25], PoseDiffusion [52],
RayDiffusion [66] and neural surface reconstruction ap-
proaches, such as FORGE [19], DUSt3R [55]. Accord-
ing to the quantitative and qualitative comparisons, our ap-
proach achieves much better robustness and accuracy in
camera pose estimation than those previous approaches, and
also geometrically more consistent surface reconstruction
results, especially given sparse view image inputs.

2. Related Work

2.1. Camera Pose Estimation

The classical Structure-from-Motion (Sf M) [40, 44] has
been a traditional solution to estimate camera poses from
unordered images, which basically relies on finding fea-
ture points [30] in overlapping images and performs cam-
era poses optimization using Bundle Adjustment [50]. Sub-
sequent approaches have significantly improve the SfM
quality by improving the feature quality [11], correspon-
dences [39, 42, 60] and differentiable Bundle Adjust-
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Figure 2. The pipeline of our GCRayDiffusion. Given sparse view images I, our approach extract the image features FI using an image
encoder, and feed FI to two sub-branches: (1) Geometric Consistent Denoiser processing, which regresses the neural ray bundles Rd

t

following a SDF conditioned ray-based diffusion, to estimate the camera poses, and (2) Neural Surface Learning of a triplane-based SDF
Fθ(Rd

t ). During the ray bundles denoiser processing, we generate explicit sampling points from neural ray bundles to regularizing the
neural surface learning, by querying their SDFs from the triplane-based SDF and locating their position on the surface of the object shape,
which leads to accurate surface reconstruction and camera poses estimation simuntaneously.

ment [27, 49]. However, the SfM framework still rely on
dense feature points to estimate camera poses for images
with sufficient overlaps, which would lead to significant
quality decrease for sparse view images with little overlaps.

To perform camera poses estimation from sparse view
images, recent efforts have explored to directly regress
6DoF camera poses from sparse images [2, 4, 8, 38, 58], or
predict the probabilistic distribution of relative pose [25, 65]
using energy-based models. SparsePose [43] proposed to
iteratively refine the sparse camera poses from the initial
estimation. RelPose++ [25] further defines a new cam-
era pose coordinate system and decouples the rotation and
translation prediction for more robust camera pose estima-
tion. More recently, with the success of Diffusion mod-
els [15, 45], PoseDiffusion [52] proposed to regress the
camera pose using a diffusion-aided bundle adjustment.
Zhang et al [66] introduce bundle rays for even sparse view
image inputs. Our approach for camera pose estimation is
inspired by these previous approaches, but leverage the ge-
ometric prior guidance to the ray based diffusion to achieve
multi-view consistent camera pose estimation.

2.2. Neural Surface Reconstruction
There have already been significant progress made for neu-
ral surface reconstruction from image sets, by represent-
ing scene geometry as deep implicit representation [1, 18,
35, 36], NeRF [33, 47, 53, 61] or 3D Gaussian Splat-
ting [21, 23, 31, 63]. Subsequent works further incorpo-
rate more explicit surface supervisions [13], surface ren-
dering [34] or multi-view geometry priors [9] for more ac-
curate surface learning. However, most of these previous
works dense input views for accurate neural surface learn-

ing, which would not work for sparse view inputs scenar-
ios. Recently, SparseNeuS [28] achieves more generaliz-
able neural surface learning form sparse input views, but
still relies on highly accurate camera poses. Unlike these
previous neural surface reconstruction works, our approach
enables geometric consistent surface reconstruction directly
from unposed sparse images, which performs camera pose
estimation using a ray based diffusion during the neural sur-
face learning simultaneously.

2.3. Joint Implicit Learning and Pose Optimization
Another category approaches for pose-free surface recon-
struction is to jointly perform implicit field learning and
camera pose optimization. BARF [26] would be probably
one of the first works to the adjust the camera pose directly
on NeRF representation following a coarse-to-fine regis-
tration strategy. GARF [7] further improve the robustness
of camera pose refinement using Gaussian based activation
functions. SCNeRF [17] proposed to optimize the ray in-
tersection re-projection error during the NeRF learning to
adjust camera poses, with subsequent efforts made for more
accurate joint learning leveraging more geometric cues such
as silhouette [3, 24] or semantic mask [64]. However, most
of the approaches depends on dense input views [59] to per-
form the joint implicit learning and pose estimation, which
will not be effective for sparse scenarios [5].

Recently, for sparse view scenarios, SPARF [51] pro-
posed to jointly learn the neural surface and refine camera
poses using the depth priors. SC-NeuS [16] introduced a
joint learning of camera poses and deep implicit representa-
tion via the explicit regularization from on-surface geome-
try. FORGE [19] established cross-view correlations to es-
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Figure 3. The illustration of our neural bundle rays definition.

timate relative camera poses, which in turn improves the
object surface learning. PF-LRM [54] and DUSt3R [55]
predict sparse poses by predicting pixel-aligned pointclouds
and using PnP to recover cameras.

Inspired by those previous work, our approach proposes
to incorporate the explicit regularization from diffusion-
based camera pose estimation, to the triplane-based signed
distance field learning, which achieves more geometric con-
sistent surface reconstruction results with multi-view con-
sistent camera pose estimation at the same time.

3. Method
Given a sparsely sampled image set I = {Ii|i = 1, ..., N}
with N is the image number, our goal is to estimate the
camera poses T = {Ti|i = 1, ..., N} for each image Ii,
and perform the surface reconstruction represented as neu-
ral signed distance field (SDF), i.e., Fθ(x ∈ R3|θ) = s ∈ R
with θ represents the parameters of the deep network and s
is the signed distance value.

Inspired by previous approach [14, 41, 66], we first pro-
pose a new camera pose parametrization using a set of neu-
ral bundle rays R = {rk|k = 1, ...,M} to parameterize
each camera, with the key difference that each ray rk is ad-
ditionally affiliated with depth information (Section 3.1).
Secondly, we formulate the distribution of noisy rays condi-
tioned on image feature embedding and the signed distance
field Fθ, and model the camera pose estimation process as a
Geometric Consistent Ray Diffusion model (GCRayDiffu-
sion ), to recover camera poses T by learning the denoiser
process of the GCRayDiffusion (Section 3.2). Finally, we
construct the triplane-based SDF learning by cooperating
the on-surface geometry regularization from the sampling
points of the neural bundle rays, which can lead to multi-
view consistent camera pose estimation and geometric con-

sistent neural surface learning simultaneously (Section 3.3).
Fig. 2 illustrates the main pipeline of our approach.

3.1. Neural Bundle Ray Representation
Unlike most of the previous approaches that representing
camera poses Ti with a 6DoF vector (including 3D rotation
and translation), we follow the latest ray-based parametriza-
tion introduced by [66] for a more flexible camera pose rep-
resentation. But different from [66], we additionally record
the depth information, which indicates the distance from the
intersect point that the ray intersect with the shape surface.
In this way, we can explicitly trace the on-surface sampling
points for each ray, thus constructing a differentiable bridge
between camera pose and surface representation for there-
after diffusion-aided neural surface learning.

Specifically, as shown in Fig. 3, we propose to over-
parameterize each image Ii as a set of neural bundle rays
Ri = {rik|k = 1, ...,M}, with each ray rik is represented
as a 7-dimension vector including a unit directional vector
vik ∈ R3 though any point pi

k ∈ R3 and depth dik ∈ R
following Plücker coordinates [37] as:

rik = (vik,mi
k,di

k) ∈ R7, (1)

where mi
k = pi

k × vik ∈ R3 is the moment vector. Given
an image Ii with known camera pose, we can uniformly
sample a set of 2D pixel coordinates {uk}M to construct
the neural bundle rays Ri, and compute the unit directional
vector vki ∈ R3 by unprojecting rays from the pixel coor-
dinates, where the moment vectors mi

k can be computed by
treating the camera centers as the point p since all rays in-
tersect at the camera center. Conversely, given a collection
of neural bundle rays Ri associated with 2D pixels {uk}M ,
we can recover the camera extrinsic and intrinsic by solv-
ing the intersection of all rays in Ri. Please refer to our
supplementary materials for the detailed derivations.

Important Property. Another important difference of
our neural bundle ray representation from previous ap-
proaches [66] is that we can trace the end point rd ∈ R3

for each ray r, since we record an additional depth informa-
tion d. Specifically, we can compute each ray’s end point
as rd = d · v + p. The end point rd ∈ R3 can also been
seen as the intersection point that r intersects with the ob-
ject’s surface, thus connecting the camera pose and object’s
surface differentiablly, which serves an important property
for thereafter ray diffusion aided neural surface learning.

3.2. Geometric Consistent Ray Diffusion
Based on our above neural bundle ray representation, we
view the bundle adjustment process of the noisy rays dur-
ing the camera pose estimation as a diffusion process, and
recover the final rays from initial noisy rays by reversing
the Markovian noising process. Specifically, for noisy ray
distribution Rt ∼ q(Rt), t = 0, ..., T , the noising stepsize
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in the diffusion process is defined by a variance schedule
{βt}Tt=0 as:

q(Rt|Rt−1) = N (Rt;
√
(1− βt)Rt−1, βtI), (2)

where q(Rt|Rt−1) is a normal distribution, such that the
noisy rays can be computed as:

Rt =
√
ᾱtR0 + ϵ

√
1− ᾱt, (3)

where αt = 1 − βt, ᾱt = 1 −
∏t

s=0 αs, and the noise
ϵ ∼ N (0, I).

Geometric Consistent Denoiser. Unlike previous
diffusion-based camera pose estimation approaches [52, 66]
which directly learn a vanilla denoiser of the target data
distribution, we propose to learn a geometric consistent
denoiser, which predicts the noise from noisy rays condi-
tioned on the signed distance field (SDF) Fθ of the entire
shape. By leveraging such globally consistent geometry
prior to the denoiser process, the ray distribution can be ef-
fectively bundle-adjusted, thus yielding to multi-view con-
sistent rays prediction for high accurate camera pose esti-
mation. Specifically, as shown in Fig. 2, we learn a denoiser
network gϕ to predict the noise ϵ added in the most recent
rays Rt as:

gϕ(Rt, t|Fθ(Rd
t ), FI) → ϵ, (4)

where Rd
t is the sampling points set of the rays set Rt, i.e.,

Rd
t = {rd} with each sampling point rd is computed from

the corresponding ray rj ∈ Rt, Fθ(Rd
t ) is the signed dis-

tance value for the sampling points predicted by Fθ, FI is
the feature vector extracted from the original image I at the
2D-pixel coordinate of each ray. To train the denoiser net-
work gϕ, we utilize the L2 distance as loss during the pa-
rameters optimization following:

Ldiff = ||gϕ(Rt, t|Fθ(Rd
t ), FI)− ϵ||2.

In this way, we build up a geometric consistent Ray Dif-
fusion (GCRayDiffusion) model to predict the neural bun-
dle rays set of each input image, and recover the corre-
sponding camera pose via the transformation of the neural
bundle rays.

3.3. Diffusion-aided Neural Surface Learning
Finally, we incorporate the GCRayDiffusion model the the
neural surface learning for the surface reconstruction. Our
key observation is to leverage the sampling points of the
neural bundle rays as explicit regularization to guide the
neural signed distance field (SDF) Fθ learning, thus intro-
ducing the multi-view consistent camera pose bundle ad-
justment priors via GCRayDiffusion for the Fθ learning, to-
wards geometric consistent surface reconstruction results.

Specifically, as shown in Fig. 2, we formulate Fθ as a
triplane-based signed distance field (SDF), which consists a
Transformer-based image encoder Φ to extract triplane fea-
ture maps from image inputs and a MLP-based decoder D
to regress the SDF prediction, as:

Fθ(x ∈ R3|Φ,D) → s ∈ R, (5)

s.t. Φ(I) = {Fx, Fy, Fz}, D(x ∈ R3|Fx, Fy, Fz) = s,

where {Fx, Fy, Fz} are the triplane feature maps and s is
the SDF value.

Diffusion-aided Learning. We leverage the sampling
points Rd of the neural bundle rays R during the T step
denoiser process of the GCRayDiffusion model, to guide
Fθ(x ∈ R3|Φ,D) learning. One straightforward yet effec-
tive operation is to regularize such sampling points Rd

t lo-
cated on the latent geometry surface of Fθ(x ∈ R3|Φ,D),
i.e.,

Fθ(Rd
t |Φ,D) → 0, (6)

during each time step t of the denoiser process from the
GCRayDiffusion model. So after T step denoising pro-
cess, we effectively guide the neural SDF learning using
the multi-view consistent camera pose bundle adjustment,
which leads to more better geometric consistent surface
learning. Once Fθ(Rd

t |Φ,D) is learned, we extract the
surface results of the zero level-set of Fθ(Rd

t |Φ,D) using
Marching Cubes [29]. Simultaneously, the final neural bun-
dle rays R are recovered by the GCRayDiffusion model,
which is used to compute the final camera poses T .

4. Experiments
4.1. Experimental Setup

Dataset and Metrics. We evaluate our approach on the
Objaverse dataset [10] and the Google Scanned Object
(GSO) [12] dataset. The Objaverse dataset consists of di-
verse 3D scenes, while the GSO dataset includes 300 sam-
ples from unseen, allowing us to test the generalization
ability of our method. To evaluate the accuracy for cam-
era pose estimation, we adopt two accuracy metrics includ-
ing camera rotation accuracy (within 15 degrees), camera
translation accuracy (within 0.1). For the surface recon-
struction accuracy, we adopt the following metrics includ-
ing Hausdorff Distance (HD), Chamfer Distance (CD), Nor-
mal Consistency (NC), by measuring the surface mesh ex-
tracted from our GCRayDiffusion and the ground truth sur-
face mesh, and also F-score (based on the Hausdorff Dis-
tance accuracy) where we use HD threshold as 5% when
calculating the Precision and Recall respectively.

Training Details. Our training process involves initial-
izing camera poses, for the Objaverse dataset, we utilize
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random initialization. The training consists of 40K itera-
tions, with 25K allocated to the coarse stage and 15K to the
fine stage. The weights for the loss functions are set as fol-
lows: wA = 0.1, wρ = wM = 0.001, and λnp = 0.05.
The local weights are λml = λnl = 0.01, and the flatten
weight is λf = 20. All experiments are conducted on a
single NVIDIA A800 GPU.

Comparing Approaches. We compare our method with
state-of-the-art camera pose estimation approaches, includ-
ing RelPose++ [25], PoseDiffusion [52], RayDiffusion [66],
FORGE [19] and DUSt3R [55]. Besides, we also choose
COLMAP [40] as baseline approach during the evalua-
tion. During the experiment, we evaluate both the cam-
era pose estimation and surface reconstruction accuracy.
For the camera pose, we directly compute the accuracy
metrics (both rotation and translation) for these compar-
ing approaches. As for the surface reconstruction, since
COLMAP [40], RelPose++ [25], PoseDiffusion [52] and
RayDiffusion [66] only compute camera poses but didn’t
perform surface reconstruction. For a fair comparison, we
further conduct NeRF-based surface reconstruction using
their camera poses estimation. Then we perform the mesh
surface quality extracted from all of these comparing ap-
proaches to conduct the comparison. We use the public re-
lease source code of COLMAP, RelPose++, PoseDiffusion,
RayDiffusion, FORGE and DUSt3R by using the default
parameter configuration for fair comparison. To achieve
better performance for COLMAP, we use SuperPoint fea-
tures [11] and SuperGlue matching [39] during the experi-
ments.

4.2. Evaluation on Objaverse Dataset
We first conduct evaluation on Objaverse dataset, by com-
paring our approaches with those previous approaches.
Since the cases in Objaverse dataset have different number
of input images, for a comprehensive evaluation, we con-
duct experiments by changing the number of input images,
i.e., from 2-6 images, for all of the different comparing ap-
proaches.

Camera Pose Estimation Comparison. As shown in
Table 1, in terms of camera rotation accuracy and cam-
era translation accuracy, our approach can achieve consis-
tently better accuracy than all of those previous approaches,
where our approach significantly outperforms COLMAP,
RelPose++ and FORGE respectively, and also better cam-
era pose estimation in rotation and translation accuracy than
SOTA approaches such as PoseDiffusion, RayDiffusion and

https://github.com/colmap/colmap
https://github.com/amyxlase/relpose-plus-plus
https://github.com/facebookresearch/PoseDiffusion
https://github.com/jasonyzhang/RayDiffusion
https://github.com/UT-Austin-RPL/FORGE
https://github.com/naver/dust3r

Rotation Accuracy
# of images 2 3 4 5 6

COLMAP 31.20 30.16 28.74 29.89 30.69
RelPose++ 61.35 62.71 65.79 66.11 68.42
FORGE 89.26 89.89 88.36 79.23 78.65
PoseDiffusion 77.3 74.82 75.25 69.34 62.1
RayDiffusion 86.00 85.00 87.20 80.33 79.39
DUSt3R 90.52 91.87 92.26 91.58 91.16
Ours 93.21 93.17 92.32 93.60 92.92

Translation Accuracy
# of images 2 3 4 5 6

COLMAP 29.36 26.25 21.83 23.79 25.21
RelPose++ 63.24 60.55 57.31 58.12 57.46
FORGE 48.54 44.39 41.33 43.58 43.26
PoseDiffusion 40.21 39.33 38.23 31.25 30.88
RayDiffusion 65.32 50.43 41.28 39.91 39.80
DUSt3R 68.26 62.45 62.03 62.97 60.21
Ours 69.77 63.44 62.62 63.91 62.89

Table 1. The camera pose estimation accuracy evaluated on
Objaverse dataset.

DUSt3R respectively. Besides, given different number of
image input (from 2 to 6), our approach also consistently
outperform those previous approaches.

Surface Reconstruction Comparison. Except from the
camera pose estimation, we also conduct comparison on the
surface reconstruction accuracy. As shown in Table 3 (up-
per rows), our approach also achieves consistently better ac-
curacy metrics, including CD, HD, NC and F-scores, than
all of those previous approaches.

Qualitative Comparison. The qualitative results pre-
sented in Fig. 4 illustrate the high-quality surface recon-
structions achieved by our method from Objaverse dataset,
and also some of those previous SOTA approaches such
as RelPose++ (with NeRF reconstruction), FORGE and
DUSt3D respectively. As we can see in the figure, Rel-
Pose++ often crush to achieve a complete surface recon-
struction, though the camera poses estimation are reason-
able, but NeRF fails to conduct success surface reconstruc-
tion given such sparse image input. Although FORGE and
DUSt3R can achieve reasonable surface reconstruction re-
sults, but our approach can achieve accurate surface recon-
struction with more geometric details, with the benefit of
more accurate camera pose estimation.

4.3. Generalization Evaluation to GSO Dataset

We also evaluate the generalization ability of our ap-
proach to another GSO dataset, where we use the parameter
weights pre-trained on Objaverse dataset and conduct test
on GSO dataset. Besides, we also make comparison with
those previous approaches mentioned above.
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Figure 4. Qualitative surface reconstruction comparison evaluated on Objaverse dataset for different comparing approaches, including
RelPose++, FORGE, DUSt3R and our GCRayDiffusion (from left to right column) respectively.

Camera Pose Estimation Comparison. As shown in
Table 2, in terms of camera rotation accuracy and camera
translation accuracy, our approach can also achieve much
better accuracy than all of those previous approaches, where
we only achieve slightly worse camera rotation accuracy
than DUSt3R when given 4 input images. This means that
our approach also achieve consistently better than all of
those previous approaches evaluated on GSO dataset.

Surface Reconstruction Comparison. Except from the
camera pose estimation, we also conduct comparison on the
surface reconstruction accuracy. As shown in Table 3 (bot-
tom rows), our approach also achieves consistently better
accuracy metrics, including CD, HD, NC and F-scores, than
all of those previous approaches, where we only achieve a
slightly worse F-score accuracy than DUSt3R.

Qualitative Comparison. The qualitative results pre-
sented in Fig. 5 illustrate the high-quality surface recon-
structions achieved by our method from the GSO dataset,
and also some of those previous SOTA approaches such
as RelPose++ (with NeRF reconstruction), FORGE, and
DUSt3D respectively. Similarly, our approach can also
achieve better visual reconstruction results than those three
SOTA approaches.

4.4. Ablation
We designed an ablation experiment to study how the two
main components impact the final camera pose estimation
and surface reconstruction respectively, including (1) how
the ray diffusion performs without the condition of triplane-
based SDF (termed as ’w/o SDF’) for the camera pose esti-
mation, and (2) how the triplane-based SDF learning per-

# of images Rotation Accuracy
2 3 4 5 6

COLMAP 29.23 29.58 31.45 32.15 32.50
RelPose++ 59.23 59.88 62.49 64.12 66.92
FORGE 83.21 84.37 85.96 79.83 76.11
PoseDiffusion 75.48 74.99 73.31 70.08 61.25
RayDiffusion 86.33 84.89 87.31 81.22 76.3
DUSt3R 91.33 91.27 92.37 90.06 91.03
Ours 93.20 93.23 91.35 91.03 94.32

# of images Translation Accuracy
2 3 4 5 6

COLMAP 26.54 23.18 21.83 22.47 20.16
RelPose++ 65.33 62.29 60.36 61.25 64.31
FORGE 49.23 48.56 45.88 46.21 42.19
PoseDiffusion 41.33 38.79 39.31 34.27 29.06
RayDiffusion 63.42 50.25 41.79 38.41 38.02
DUSt3R 66.33 61.9 61.93 59.82 60.59
Ours 68.82 62.77 61.95 63.13 64.81

Table 2. The camera pose estimation accuracy evaluated on the
GSO dataset.

form without the aid of our GCRayDiffusion (termed as
’w/o ray diffuser’) for the surface reconstruction. As shown
in Table 4 and Table 5 evaluated on the Objaverse dataset,
we can see that both the camera pose estimation and sur-
face reconstruction quality will decrease without using the
two main components. Fig. 6 also show several surface re-
construction results with or without using the guide of our
GCRayDiffusion respectively.
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Figure 5. Qualitative surface reconstruction comparison evaluated on GSO dataset for different comparing approaches, including Rel-
Pose++, FORGE, DUSt3R, and our GCRayDiffusion (from left to right column) respectively.

Dataset CD↓ HD↓ NC↑ F-score↑

Objaverse
COLMAP 9.17 15.41 0.74 0.536
RelPose++ 4.58 6.49 0.76 0.615
FORGE 0.145 0.405 0.989 0.89
DUSt3R 0.132 0.368 0.995 0.97
Ours 0.125 0.323 0.997 0.99

GSO
COLMAP 10.26 13.32 0.72 0.519
RelPose++ 3.96 5.72 0.73 0.527
FORGE 0.155 0.437 0.985 0.854
DUSt3R 0.139 0.366 0.973 0.961
Ours 0.131 0.302 0.988 0.958

Table 3. Surface reconstruction accuracy on Objaverse and
GSO dataset respectively.

Rotation Trans

w/o SDF 86.3 37.5
GCRaydiffusion 92.32 62.62

Table 4. Camera pose estimation accuracy comparison.

5. Conclusion
This paper contributes a new pose-free surface learning
with the aid of a novel geometric consistent ray diffusion,
i.e., GCRayDiffusion, which achieves better camera pose
estimation and surface reconstruction than previous SOTA

Figure 6. Surface reconstruction comparison with or without using
ray diffuser of our GCRayDiffusion.

CD↓ HD↓ NC↑ F-score↑
w/o ray diffuser 0.16 0.802 0.992 0.988
GCRaydiffusion 0.125 0.323 0.997 0.99

Table 5. Surface reconstruction accuracy comparison.

approaches. We hope that our approach can inspire subse-
quent works for more robust and accurate pose-free surface
reconstruction from sparse image inputs in this community.
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