
Graphical Models 123 (2022) 101165

A
1

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

ObjectFusion: Accurate object-level SLAM with neural object priors
Zi-Xin Zou a, Shi-Sheng Huang b, Tai-Jiang Mu a,∗, Yu-Ping Wang a

a BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
b Beijing Normal University, China

A R T I C L E I N F O

Keywords:
Object-Level SLAM
Online Reconstruction
Deep 3D Representation and Reconstruction

A B S T R A C T

Previous object-level Simultaneous Localization and Mapping (SLAM) approaches still fail to create high quality
object-oriented 3D map in an efficient way. The main challenges come from how to represent the object shape
effectively and how to apply such object representation to accurate online camera tracking efficiently. In this
paper, we provide ObjectFusion as a novel object -level SLAM in static scenes which efficiently creates object-
oriented 3D map with high-quality object reconstruction, by leveraging neural object priors. We propose a
neural object representation with only a single encoder–decoder network to effectively express the object shape
across various categories, which benefits high quality reconstruction of object instance. More importantly, we
propose to convert such neural object representation as precise measurements to jointly optimize the object
shape, object pose and camera pose for the final accurate 3D object reconstruction. With extensive evaluations
on synthetic and real-world RGB-D datasets, we show that our ObjectFusion outperforms previous approaches,
with better object reconstruction quality, using much less memory footprint, and in a more efficient way,
especially at the object level.
1. Introduction

Object-oriented 3D map often serves as the basis for indoor scene
understanding and 3D mapping [1–4], which can facilitate many appli-
cations like intelligent robots, autonomous driving, virtual/augmented
reality, etc. Accurate and efficient object-oriented 3D map genera-
tion, especially the object-level Simultaneous Localization and Map-
ping (SLAM) [5–9], has been receiving continuous research interest
from computer graphics and computer vision communities these years.
However, previous object-level SLAM approaches would often lead to
incomplete object reconstruction [6] when unsatisfactorily scanned by
non-professional consumers, or fail to recover 3D shapes of various
categories [5,8] in an efficient and accurate way [9]. Although some
recent works like RigidFusion [1] pay more attention on the tracking
robustness of object motion in dynamic scenes [8,10–13], here we focus
on the object’s geometry reconstruction quality, which is an essential
issue for object-level SLAM techniques in both static and dynamic 3D
indoor scenes.

One basic challenge to recover high-quality object reconstruction
comes from the shape’s geometry representation. The implicit function
on volumetric voxels, such as signed distance function (SDF) [14], has
the advantage of representing 3D objects or scenes at any topology, thus
serving as the fundamental shape geometry representation for current
mainstream online 3D reconstruction approaches [15–18], object-level
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SLAM both in static [6,8] and dynamic [10] scenarios. Nevertheless,
this volumetric representation often needs to allocate a huge amount
of GPU memories even for tiny objects, leading to heavy object fusion
systems [6]. Besides, holes or large missing object surface regions
could not be easily completed since no extra geometry priors could be
provided by such representation.

The latest neural implicit function [19–21] and its success for
online 3D scene reconstruction (DI-Fusion [22], iMAP [9]), motivate
us to introduce neural implicit function as a basic representation for
object-level SLAM. NodeSLAM [7] provides probably the first object-
level SLAM system which leverages neural implicit function as object
representation. However, when applying such neural implicit function
for object reconstruction in object-level SLAM, the object shape, object
pose and camera pose are often tightly entangled [23] within the neural
implicit function, making it difficult to decode the geometry priors as
direct cues for accurate camera tracking in an efficient way. So it still
remains to be a challenging problem to leverage the neural object
priors to object-level SLAM, i.e., efficiently employing the direct object
priors as accurate cues without sacrificing its effectiveness, to achieve
high-quality object-orientated 3D map generation.

In this paper, we propose to express object shape as a novel deep
implicit object representation. Unlike the occupancy probability used
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Fig. 1. An example demonstration of our ObjectFusion evaluated on ScanNet dataset. Our approach incrementally builds up a map of objects represented using deep implicit
object representation from an RGB-D sequence. For real-time visualization, object meshes are extracted at lower (323) resolution. The final object meshes which are extracted at
higher (2563) resolution and placed in background scene are shown at right-bottom. Please refer to our supplementary video for more results.
in NodeSLAM [7], our representation encodes the object shape as an
implicit function using a simple MLP-based encoder–decoder network,
which can effectively express the shape details across various object
categories. What is more, to convert the object representation as cues
for camera tracking and object reconstruction, we propose to directly
decode the deep implicit object representation as precise measurements
efficiently, without using the time-consuming neural rendering modules
as in [7,9]. Specifically, we propose an accurate camera pose estimation
directly based on the deep implicit object representation using a hybrid
frame-to-model camera tracking. Furthermore, we formulate the deep
implicit object representation as several effective error terms in a
joint optimization to further refine the object shape, object pose and
camera pose within a local sliding window, thus achieving the final
object-orientated 3D map with high quality in an efficient way.

To validate the effectiveness of our approach, we conduct extensive
experiments on both synthetic and real-world RGB-D public datasets,
such as SceneNet RGB-D dataset [24] and ScanNet dataset [25]. The
results show that our approach can produce better object reconstruc-
tion quality with completed and detailed shape than previous TSDF-
based object-level SLAM approaches [6,8], while maintaining at least
comparable (sometimes better) camera pose estimation accuracy, ap-
proaches [6], thus serving as a new state-of-the-art object-level SLAM
method for accurate and efficient object-orientated 3D map generation.

2. Related work

Our work aims at an accurate object-orientated 3D map generation
using a visual SLAM based on RGB-D. The visual SLAM is a con-
tinuous popular SLAM technique with many exciting works such as
MonoSLAM [26], LSD-SLAM [27], ORB-SLAM2 [28], RKSLAM [29] and
DSO [30] for static scenes, PL-SLAM [31] for structured scenes (with
point and line features [32]), LCCRF-SLAM [33], ClusterSLAM [34]
and ClusterVO [35] for dynamic scenes. Here we only discuss relevant
works including online 3D reconstruction, deep 3D representation and
reconstruction and object-level SLAM, and refer readers to [36] for
a dedicated survey on the progress of visual SLAM in the past few
decades.

2.1. Online 3D reconstruction

Inspired by the pioneering work of KinectFusion [15], the online 3D
reconstruction has achieved much progress in the past decades. Voxel-
Hash [16] and its variations [37] provided an efficient sparse voxel
2

allocation mechanism, which is capable of reconstructing large scale
3D scenes efficiently. The subsequent approaches introduce techniques
such as global pose graph (e.g., InfiniTAM [38]), bundle adjustment
(e.g., BundleFusion [17], SemanticFusion [39], Noise Resilient Fu-
sion [18]), semantic guidance [40], deformable loop closure [41] or
multi-sensor integration [42] to reconstruct globally consistent 3D
scenes [43].

One of the main drawbacks of the previous online 3D reconstruc-
tion approaches is that they rely on memory-consuming geometry
representation, i.e., the signed distance function (SDF) on volumetric
voxels [14], which often leads to a huge amount of GPU memory
consumption. Different from those previous approaches, we introduce
a novel deep implicit object representation to express the object shape.
Based on such representation, we provide an accurate object-level
SLAM approach with much less memory footprint, while achieving
completed and detailed 3D object reconstruction of high quality.

2.2. Deep 3D representation and reconstruction

With the huge progress of deep geometry learning [44], many deep
3D representations for objects or scenes have been proposed these
years. DeepSDF [45] probably for the first time proposes to formulate
the implicit function as an MLP-based deep neural network, i.e., neural
implicit function, which enables effective single-view 3D reconstruc-
tion and shape interpolation. DeepLS [20] and LIG [21] propose to
express the local shapes as a neural implicit function, thus being
able to effectively represent complex scenes or objects across various
categories. Convolutional Occupancy Network [46] introduces a more
flexible neural implicit representation by combining the convolutional
encoders and implicit occupancy decoders, which shows the impressive
ability for high-fidelity 3D reconstruction. Based on such neural im-
plicit function, many 3D reconstruction approaches have been proposed
for high-quality 3D object or scene reconstruction. DI-Fusion [22] is
one of the first approaches to leverage a deep 3D representation for
online 3D reconstruction, and achieves impressive 3D reconstruction
results. iMAP [9] adopts to use NeRF [47] as the scene representation,
which achieves impressive 3D scene reconstruction results. Given cam-
era poses estimation, FroDo [23] and NeuralRecon [48] can generate
3D object or scene reconstruction from monocular RGB frames with
impressively high surface reconstruction quality.

Our approach also adopts to represent the object shape as a neural
implicit function. But different from these previous works, we con-
tribute to the way that converts the neural object representation as
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Fig. 2. Overview of our ObjectFusion based on deep implicit object representation.
ObjectFusion estimates the camera pose of each frame and incrementally builds up 3D
surface reconstruction of object instances in the scene.

precise measurements, for accurate camera pose estimation and object
surface generation in an efficient way, which aims at high-quality
object-oriented 3D map generation.

2.3. Object-level SLAM

As one kind of visual SLAM technique, object-level SLAM adopts to
utilize object instances as landmarks for accurate camera tracking and
surface mapping. SLAM++[5] for the first time proposes to utilize ob-
ject priors to detect object landmarks for camera tracking, although the
object priors are simply obtained by retrieving in manually collected
3D shape sets. The following works such as Fusion++ [6] directly use
the object mask predicted from 2D CNNs to build object landmarks for
camera poses estimation, and formulate the object level bundle adjust-
ment to further rectify the global pose estimation. MaskFusion [10],
RigidFusion [1], MID-Fusion [8] and EM-Fusion [11] provide accurate
object segmentation in dynamic scenes and use the object instances as
landmarks for accurate camera tracking or scene reconstruction.

Unlike these previous object-level SLAM approaches that utilize
implicit function as object representation, our approach proposes to
express the object shape as deep implicit object representation, which
can effectively represent the fine geometry details even across various
object categories. Benefiting from the deep implicit object represen-
tation, we show that our approach can achieve much better object
reconstruction quality in terms of completion and details than the previ-
ous approaches, and serves as a new state-of-the-art object-level SLAM
approach.

3. ObjectFusion

Overview. The overview of our system is illustrated in Fig. 2.
Given a stream of RGB-D images, our ObjectFusion system estimates
the camera pose of each frame and incrementally builds up 3D surface
reconstruction of object instances in the scene, leading to an object-
oriented 3D map as output. Specifically, for each coming RGB-D frame,
we first detect the instance segmentation masks in the frame, and then
encode each object instance to a latent vector using a deep implicit
object representation (see Section 3.1). Different from traditional object
representations such as volumetric voxels or discretized surfels, our
representation can effectively learn the object geometry priors, and can
reconstruct the final mesh at arbitrary resolution and topology. For
each detected object instance, we perform object-level data association
and initialize the object shape and pose (see Section 3.3). Then the cam-
era pose is estimated using our hybrid camera tracking which is based
both on the deep implicit object representation and sparsely sampled
map points (see Section 3.4). Finally, in order to obtain the globally
consistent object shape and pose, we build up a joint optimization for
3

Fig. 3. The backbone of our deep implicit object representation. The encoder encodes
an object instance image as a latent vector, and then is decoded as a signed distance
function of the object. The signed distance value of surface points (depth) and
projection silhouette are used for object shape and pose inference.

object shape, object pose, and camera pose in a sliding keyframe window
(see Section 3.5).

Data Association. After extracting objects from RGB image with
instance masks, we need to associate them with existing objects in the
map. To this end, we project the 3D bounding boxes of all existing
objects in the map to the current frame, and match these projected
2D bounding boxes with the mask bounding boxes by computing their
Intersection over Union (IoU). Kuhn–Munkres Algorithm [49] is applied
to solve this linear assignment problem. If an object instance is not
associated with any existing object, we initialize a new object in the
map.

3.1. Deep implicit object representation

Different from the implicit function representation used in previous
object-level SLAM approaches, we propose to represent the object shape
using the deep implicit object representation. Unlike NodeSLAM [7]
encoding the object shape with voxel occupancy grids which has lim-
ited representation ability for complex objects, we adopt the implicit
function, i.e., SDF, to represent the object underlying 3D surface, and
formulate it as a deep neural network following the DeepSDF architec-
ture [19], leading to a deep implicit object representation. Specifically,
we adopt an encoder–decoder architecture for the deep implicit repre-
sentation, in which the predicted object instance is encoded as a latent
vector and then decoded as the SDF of the object shape. The structure
of our deep implicit object representation is illustrated in Fig. 3.

In the deep implicit object representation, we use an 𝐿-dimension
latent vector 𝑙 for the object shape and use 𝑇𝑜𝑤 to represent the object
pose. 𝑇𝑜𝑤 denotes a transformation from the world coordinate system
to object canonical coordinate system. For decoder 𝜙𝑑 , we compute the
signed distance 𝑠 at any position 𝑝 ∈ 𝑅3 concatenated with the latent
vector 𝑙 as 𝑠 = 𝜙𝑑 (𝑝, 𝑙). The final underlying surface is extracted as the
zero iso-surface using Marching Cubes [50].

Following the automatic derivative mechanism from the deep neural
network, we can easily calculate the spatial derivative of 𝜕𝜙𝑑 (𝑝,𝑙)

𝜕𝑝 via

back-propagation of the deep implicit object representation, which can
be further used in the camera tracking and joint optimization described
later.

3.2. Object shape and pose inference

One important point for our deep implicit object representation is
how to infer the object shape and pose from such neural representation
accurately and efficiently. Unlike NodeSLAM [7] and iMAP [9] that
infer the object shape and pose via time consuming neural rendering
modules, we propose to address this issue in an optimization way.
Given initial object shape (encoded in latent vector) and object pose,
our strategy is to iteratively update the object latent vector and pose
using an object shape and pose optimization. For inference accuracy,
we introduce hybrid cues and formulate them as precise measurements
into the optimization. For efficiency, we adopt to optimize the object
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shape and pose in an alternately iterative way, i.e., we first optimize the
object shape with a shape inference by fixing the object pose and then
optimize the object pose with a pose inference by fixing the object shape.
In this way, we perform inference of object shape and pose accurately
and efficiently from our deep implicit object representation.

Shape Inference. Given the initial object latent vector 𝑙0 from the
deep implicit object representation, and transformation 𝑇𝑜𝑐 from RGB-
D frame to object canonical coordinate, which can be calculated by
given camera pose 𝑇𝑤𝑐 as 𝑇𝑜𝑐 = 𝑇𝑜𝑤𝑇𝑤𝑐 , we seek to find the optimized
latent vector 𝑙∗ by minimizing the object function 𝐸𝑠ℎ𝑎𝑝𝑒 considering
he geometry term 𝐸𝑔 , silhouette term 𝐸𝑠, and regularization term 𝐸𝑟

as:

𝑙∗ = argmin
𝑙
{𝐸𝑠ℎ𝑎𝑝𝑒 = 𝐸𝑔 +𝑤1 ⋅ 𝐸𝑠 +𝑤2 ⋅ 𝐸𝑟} (1)

here 𝑤1 and 𝑤2 are weight parameters that balance the silhouette
erm and regularization term respectively.

The geometry term 𝐸𝑔 measures the SDF errors from each depth
oint 𝑝 ∈ 𝑃 of the current RGB-D frame, by considering both the SDF
alue from the point 𝑝 and its normal information 𝑛 respectively as:

𝑔(𝑇𝑜𝑐 , 𝑙) =
1

2|𝑃 |
∑

𝑝∈𝑃
{𝐿(𝜙𝑑 (𝑇𝑜𝑐𝑝, 𝑙), 0)

+ 𝐿(𝜙𝑑 (𝑇𝑜𝑐𝑝 + (𝑇 −𝐓
𝑜𝑐 𝑛) ⋅ 𝑡, 𝑙), 𝑡)}

(2)

𝐿(𝑎, 𝑏) = |𝑐𝑙𝑎𝑚𝑝(𝑎, 𝛿) − 𝑐𝑙𝑎𝑚𝑝(𝑏, 𝛿)| (3)

𝐿(𝑎, 𝑏) is the clipped L1 loss function with threshold 𝛿 = 0.1, and 𝑡
denotes the step length parameter.

For the silhouette term 𝐸𝑠, we follow the mechanism introduced
by [23,51] which casts rays from the object’s mask, uniformly samples
points along the rays, and calculates the probability hitting function
from the object surface as:

𝐸𝑠(𝑇𝑜𝑐 , 𝑙) = ∫𝛺
{𝐻(𝑇𝑜𝑐 , 𝑙)𝑃𝑓 (𝑥)

+ (1 −𝐻(𝑇𝑜𝑐 , 𝑙))𝑃𝑏(𝑥)}𝑑𝛺
(4)

𝐻(𝑇𝑜𝑐 , 𝑙) = 1 − 𝑒𝑥𝑝(
∑

𝑝 𝑜𝑛 𝑟𝑎𝑦
𝑙𝑜𝑔(1 − 𝑒𝜙𝑑 (𝑇𝑜𝑐𝑝,𝑙)𝜁

𝑒𝜙𝑑 (𝑇𝑜𝑐𝑝,𝑙)𝜁 + 1
)) (5)

here 𝑃𝑓 and 𝑃𝑏 are two parameters used to describe the probability
or each pixel whether it belongs to object instance or the background
egion respectively, with 𝑃𝑓 + 𝑃𝑏 = 1. Specifically, we set 𝑃𝑓 = 1 for
ixels 𝑥 located in object instance mask, otherwise set 𝑃𝑏 = 1 for those

located in background. Parameter 𝜁 controls the function smoothness
and is set to 100.

For the regularization term 𝐸𝑟, we adopt to regularize the latent
vector 𝑙 as 𝐸𝑟 = ‖𝑙‖2.

Pose Inference. Given the optimized latent vector 𝑙∗ for the ob-
ject shape, we seek to find an optimized object pose 𝑇 ∗

𝑜𝑤 for each
object instance. Our observation is that by applying the optimized
transformation 𝑇 ∗

𝑜𝑤, the decoded SDF values for depth point 𝑝 ∈ 𝑃 in
the current RGB-D frame from the decoder 𝜙𝑑 (𝑝, 𝑙∗) should reach the
minimal value, ideally i.e., zero. So we formulate the pose inference
with a least-squares optimization as:

𝑇 ∗
𝑜𝑤 = argmin

𝑇𝑜𝑤
{𝐸𝑝𝑜𝑠𝑒(𝑇𝑜𝑤) =

∑

𝑝∈𝑃
𝜌(‖
‖

𝜙𝑑 (𝑇𝑜𝑤𝑇𝑤𝑐𝑝, 𝑙
∗)‖
‖

2)} (6)

with 𝜌(⋅) denoting a Huber robust function.

3.3. Object shape and pose initialization

Our object shape and pose inference needs good initial guesses,
which could accelerate the convergence of both shape inference and
pose inference for the final accurate object shape and pose.

Shape initialization. DeepSDF [19] proposes to initialize the object
latent vector as a prior with a zero-mean multivariate-Gaussian distri-
bution. However, this initialization strategy is only suitable for limited
4

object class. NodeSLAM [7] uses a one-hot vector for different object t
classes, but the convergence is slow as extra optimization iteration is
needed during the optimization.

Inspired by FroDo [23], we adopt to train the encoder network with
only object instances, and take the predicted latent vector as the object
shape initialization latent vector, which can cover different categories
of objects. Specifically, we use ResNet50 [52] as the backbone of the
encoder network and modify the output variable dimension as the size
of the object’s latent vector, i.e., 128.

Pose initialization. A good initialization for object pose is also
important for shape inference. Here, we assume that all objects are
placed vertically on the scene floor, where the floor plane is estimated
by the point cloud of floor sampled in the view of all the past frames.
Besides, since the coordinates of ShapeNet [53] models are between
[−1, 1], empirically, we resize the scale of the transformed point cloud
in object canonical coordinate within the range of [−1, 1]. Besides,
we enumerate 𝐾 = 15 rotation angle uniformly sampled within 360◦

around the vertical axis of the floor, and use them as the initial object
pose for the subsequent shape inference.

With the above shape and pose initialization, we perform the object
shape and pose inference described in Section 3.2 to generate the object
shape and pose respectively, which is further used to track camera
poses. Besides, for real time front-end tracking, we perform the object
and pose initialization and inference in a parallel thread at back-end.

3.4. Camera tracking

After building up the object shape and pose inference from the deep
implicit object representation, we propose a hybrid camera tracking to
estimate the camera pose of each RGB-D frame directly based on the
deep implicit object representation. Specifically, at each timestep 𝑡, we
estimate the camera pose 𝑇 𝑡

𝑤𝑐 in the world coordinate using a set of
object instance landmarks {𝑂𝑡

𝑖} and the depth map 𝐷𝑡. First, for each
object 𝑂𝑡

𝑖 , we project the depth measurement 𝐷𝑡 back to 3D point cloud
hrough 𝑃 𝑡

𝑖 = 𝜋−1(𝑀𝑖(𝐷𝑡)) using the given camera intrinsic parameters,
here 𝜋 denotes the projection function and 𝜋−1 is its reverse function.
𝑖 is the mask function to get the depth measurement of object {𝑂𝑡

𝑖}.
e make an initialization of the current frame pose 𝑇 𝑡

𝑤𝑐 as its reference
eyframe’s pose 𝑇 𝑟

𝑤𝑐 . Then our goal is to estimate the camera pose 𝑇 𝑡
𝑤𝑐

y minimizing the following objective function:

(𝑇 𝑡
𝑤𝑐 ) = 𝐸𝑠𝑝(𝑇 𝑡

𝑤𝑐 ) +𝑤3 ⋅ 𝐸𝑜𝑏𝑗 (𝑇 𝑡
𝑤𝑐 ), (7)

here 𝐸𝑠𝑝(𝑇 𝑡
𝑤𝑐 ) and 𝐸𝑜𝑏𝑗 (𝑇 𝑡

𝑤𝑐 ) are the sparse point term and object term
espectively, and parameter 𝑤3 controls the balance between the two
erms.
Object Term. Our observation is that the decoded SDF value for

oints located at the depth measurement of an object should be a small
alue, ideally i.e. zero, thus the object term is designed to align the
nderlying 3D surface of the object decoded by the latent vector, which
s inspired by SDF tracker [22,54] that estimates the camera pose by
inimizing the signed distance value of objects’ depth point cloud 𝑃 𝑡

𝑖
ransformed in the object’s canonical coordinate. We define the object
erm as:

𝑜𝑏𝑗 (𝑇 𝑡
𝑤𝑐 ) =

∑

𝑖

∑

𝑝∈𝑃 𝑡
𝑖

𝜌(‖
‖

𝜙𝑑 (𝑇 𝑖
𝑜𝑤𝑇

𝑡
𝑤𝑐𝑝, 𝑙

𝑖)‖
‖

2), (8)

Since the object term depends on object surface reconstruction in
ood quality, to make an accurate camera tracking, we only choose
good’ object instances for calculating the object term. Here, we pro-
ose to label the object instance as ‘good’ or ‘bad’ during the object
hape and pose inference (Section 3.2). Specifically, if the Chamfer
istance between the generated mesh and the corresponding depth
easurements is less than the threshold 𝜏𝑜𝑘, we set the object as ‘good’

o be able to participate in tracking and following pose optimization
tep. Otherwise, the object is set as ‘bad’ without being considered as
easurement for the object term. And if the Chamfer distance is larger
han the threshold 𝜏𝑓𝑎𝑖𝑙, we will remove them from the map.
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Sparse Point Term. Similar to other sparse SLAM systems like ORB-
SLAM2 [55], sparse point term is the sum of re-project error between
matched 3D map points 𝑋𝑖 ∈ R3 and 2D keypoints 𝑥𝑗 ∈ R2, with
𝑖, 𝑗) ∈ 𝜒 the set of all matches:

𝑏𝑔(𝑇 𝑡
𝑤𝑐 ) =

∑

(𝑖,𝑗)∈𝜒
𝜌(‖‖
‖

𝜋(𝑋𝑖) − 𝑥𝑗
‖

‖

‖

2
) (9)

here 𝜌(⋅) is the Huber robust function. When performing the op-
imization, we apply Gauss–Newton iterative algorithm to solve the
ptimization problem efficiently.

.5. Joint optimization of object shape, object pose and camera pose

During the long-term camera tracking, the camera poses estimated
y our hybrid camera tracking would occur drift. To rectify the mo-
ion drift, we also build a joint optimization in the back-end that
ointly rectifies the object shape, object pose and camera pose. How-
ver, performing such joint optimization for every RGB-D frame would
e time-consuming. For time efficiency, we only perform the joint
ptimization for object shape, object pose and camera pose in the
eyframes of a sliding window.
Keyframe Selection. Our keyframe selection strategy consists of

our parts. A new keyframe will be inserted when any of the following
onditions is met:

1. The number of tracked points in current frame is less than a
minimal value 𝜏𝑡 = 150.

2. No new keyframe is inserted for a long time, i.e., the number of
frames passed since the last keyframe surpasses a given threshold
𝜏𝑓 = 25.

3. A new object is detected and the number of frames passed since
the last keyframe surpasses 𝜏𝑜 = 10, so a keyframe is needed to
initialize and create the new object.

4. The frame viewpoint for any of the existing objects is larger than
18◦.

Joint Optimization. For a sliding window of keyframe set  which
ontains object instances , our goal is to jointly optimize the camera
ose 𝑇 𝑖

𝑤𝑐 , 𝑖 ∈ , object pose 𝑇 𝑗
𝑜𝑤, 𝑗 ∈  and object shape in latent

ector 𝑙𝑗 . In our experiments, we set the keyframe number of the sliding
indow as 𝑁 = 5 in the synthetic dataset and 𝑁 = 10 in the real-world
ataset.

For efficiency, our joint optimization takes an alternatively iterative
trategy to optimize shape and pose respectively, i.e. we firstly apply a
ose optimization step by fixing all object shapes and then apply a shape
ptimization step by fixing all camera poses and object poses.
Pose Optimization Step. In pose optimization step, our purpose

s to minimize the following objective function with respect to sparse
oint set  and ‘good’ object set ′ ⊆ :

in
∑

𝑖∈,𝑗∈′
𝑒𝑐𝑜(𝑖, 𝑗) +

∑

𝑖∈,𝑘∈
𝑒𝑐𝑝(𝑖, 𝑘) (10)

here the camera-to-object error 𝑒𝑐𝑜(𝑖, 𝑗) and camera-to-point error
𝑐𝑝(𝑖, 𝑘) defined as:

𝑐𝑜(𝑖, 𝑗) = 𝜌(‖‖
‖

𝜙𝑑 (𝑇
𝑗
𝑜𝑤𝑇

𝑖
𝑤𝑐𝑃

𝑗
𝑖 , 𝑙

𝑗 )‖‖
‖

2
) (11)

𝑐𝑝(𝑖, 𝑘) = 𝜌(‖‖
‖

𝜋(𝑋𝑘) − 𝑥𝑘‖‖
‖

2
) (12)

here 𝑥𝑘 is the corresponding 2D points of 𝑋𝑘 and 𝑃 𝑗
𝑖 is the depth point

loud of the object 𝑗 measured in the camera 𝑖. This optimization can be
erformed by Levenberg–Marquardt algorithm using Schur Compliment
fficiently.
Shape Optimization Step. Object shape should be optimized to fit

ulti-view observations of keyframes in sliding window, we accumu-
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ate all objective functions across each of object–camera pairs as the I
hole shape optimization function:

in
∑

𝑖∈,𝑗∈
{𝐸𝑔(𝑇

𝑗
𝑜𝑤𝑇

𝑖
𝑤𝑐 , 𝑙

𝑗 ) +𝑤1 ⋅ 𝐸𝑠(𝑇
𝑗
𝑜𝑤𝑇

𝑖
𝑤𝑐 , 𝑙

𝑗 )}

+
∑

𝑗∈
𝑤2 ⋅ 𝐸𝑟(𝑙𝑗 )

(13)

here 𝐸𝑔 , 𝐸𝑠, 𝐸𝑟 are geometry term, silhouette term and regularization
erm and use the same weight parameters 𝑤1, 𝑤2 as Eq. (1). Adam
lgorithm is applied to optimize the latent vector of all objects in a
liding window.

. Experiments and analysis

In this section, we first explain the implementation details of our
ethod and then compare our method with others to demonstrate its

ffectiveness and efficiency.

.1. System implementation

When implementing the encoder–decoder network of deep implicit
bject representation, we use 8 FC layers for the decoder as like
eepSDF architecture [19], and also train the networks using the 3D
odels from ShapeNet dataset [53]. Different from DeepSDF[19] which

rains an individual decoder for each class, we train one decoder to
epresent different sets of object shapes using all models together. We
se the L2 loss like [23,56] did to train the encoder to measure the
istance between the embedding vector of the model and the predicted
atent vector of its rendered image. The rendered images are provided
y [57].
Parameters. We set the dimensions of the latent vector in our

etwork to be 128. For optimization term 𝐸𝑠ℎ𝑎𝑝𝑒, we set silhouette
erm weight 𝑤1 = 1 in a synthetic dataset and 𝑤1 = 0.1 in a real-
orld dataset, regularization term weight 𝑤2 = 1𝑒−4, and step length
f sample points along normal direction 𝑡 in is set as 0.05. Threshold
arameters of Huber robust function of object’s depth point cloud term
in Eqs. (6), (8), (11)) and sparse map point term (in Eqs. (9), (12))
re set 0.05 and

√

5.991 respectively. We also set object term weight in
camera tracking (in Eq. (7)) as 𝑤3 = 0.2.

Dataset. We evaluate our system performance both on a synthetic
ataset and a real-world dataset. For the synthetic dataset, we create
our synthetic indoor scenes with different objects randomly placed
n the floor, and five camera trajectories are randomly generated for
ach scene. The code for the generation and rendering of this dataset is
rovided by SceneNet RGBD [24]. We only evaluate the performance of
bject reconstruction on the most common classes in the indoor scenes,
.e., ‘‘Chair’’, ‘‘Table’’ and ‘‘Sofa’’. It is more difficult to reconstruct these
bjects since they have more complex shapes and poses than cylindrical
bjects like ‘‘cup’’, ‘‘bottle’’ or ‘‘bowl’’ which most are axial symmetry
ith simple shapes in NodeSLAM [7]. For real-world dataset, we adopt
canNet dataset [25] to evaluate the object reconstruction quality of
ur approach for a real-world dataset.

.2. Evaluation on camera pose estimation

In this subsection, we make an evaluation of accuracy of the camera
ose estimation of our approach on the synthetic dataset. Specifically,
e compare our system with five previous different types of baseline

ystems, (1) sparse SLAM: ORB-SLAM2(ORB) [28]; (2) TSDF-fusion
econstruction system: InfiniTAM(IM) [38], BundleFusion(BF) [17]; (3)
bject-level SLAM: MID-Fusion(MID) [8] and MaskFusion(MF) [10].
or the accuracy metric, we adopt Root-Mean-Square-Error (RMSE)
f Absolute Trajectory Error (ATE) as a metric of the accuracy of
amera pose estimation. ORB-SLAM2 is a sparse feature point-based
LAM, which does not reconstruct any object surface. Here, we adopt
RB-SLAM2 as the baseline approach for the camera pose estimation.

nfiniTAM, BundleFusion and MID-Fusion are TSDF-based 3D surface
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Table 1
Comparison of ATE on our synthetic four scenes (measured in centimeters). The best numbers are indicated in boldface.

S1(1) S1(2) S1(3) S1(4) S1(5) S2(1) S2(2) S2(3) S2(4) S2(5) S3(1) S3(2) S3(3) S3(4) S3(5) S4(1) S4(2) S4(3) S4(4) S4(5)

IM 6.19 48.58 29.80 17.75 10.11 23.64 87.37 6.29 5.16 17.94 25.61 16.71 12.40 9.29 5.11 60.90 10.33 52.82 37.15 13.03
MF 8.17 28.36 36.42 18.14 13.19 31.07 40.52 4.89 8.57 28.50 16.67 12.73 30.55 7.19 5.35 30.45 4.41 26.57 17.14 16.29
MID 6.20 4.94 11.10 3.74 3.92 4.55 5.32 4.09 4.01 2.69 4.18 – 9.74 4.06 2.69 3.77 3.00 – 5.92 8.84
BF 5.51 4.60 10.34 1.72 3.83 2.78 13.54 3.07 3.92 4.68 7.94 1.84 3.43 3.97 3.64 8.47 1.19 11.02 7.57 10.46
Ours 1.71 0.58 1.07 0.60 0.86 1.31 1.87 0.87 0.51 1.31 0.88 0.57 1.16 1.00 0.34 0.74 0.95 1.43 1.49 1.05

Ours(w/o Obj) 0.75 0.53 0.57 0.34 0.84 0.88 1.34 0.89 0.53 1.49 1.35 0.57 1.31 1.07 0.33 0.94 1.22 1.63 1.05 0.70
ORB 0.86 0.30 0.59 0.58 0.49 1.14 0.48 0.27 0.34 1.40 0.61 0.54 0.82 0.40 0.29 0.45 0.42 1.29 1.14 0.73
Table 2
Object reconstruction results comparison on Chamfer distance(CD, measured in centime-
ters) and completeness(COMP, with 5 cm threshold). The best numbers are indicated
in boldface.

Methods Chair Table

CD COMP CD COMP

MID-Fusion 10.12 65.80 13.58 60.94
MaskFusion 13.66 47.81 16.05 35.52

Ours(w/o initial Opt) 7.08 80.31 12.22 66.33
Ours(w/o joint Opt) 5.15 85.07 8.21 79.18
Ours 4.90 86.92 7.67 81.58

reconstruction systems, while MaskFusion is a surfel-based 3D surface
reconstruction system. InfiniTAM and BundleFusion aim at 3D recon-
struction for the whole scene while MID-Fusion and MaskFusion are
object-level SLAM for object reconstruction only. Additionally, we also
implement a version of our system without using object landmarks
(i.e., tracking only with map points) to evaluate the effect of object
term in our camera tracking module.

In order to eliminate the impact from the different implementation
of different systems on the results, we perform the evaluation for
each sequence five times, and calculate the average ATE accuracies by
removing the highest and lowest ATE scores. Table 1 shows the detailed
ATE scores of five random trajectories (the numbers in brackets are
their trajectory index) for each of four synthetic scenes. ‘-’ means that
the method gets failed, for which we would not evaluate the accuracy
for such scenes. ORB-SLAM2 achieves the lowest tracking ATE accuracy
score in most sequences of the synthetic dataset benefiting from its
sparse feature-point-based tracking method. Our method outperforms
InfiniTAM, MID-Fusion, MaskFusion and BundleFusion, which achieves
significant ATE score decrement over these four approaches, and ob-
tains a comparable trajectory accuracy level as ORB-SLAM2. For the
object term, our approach achieves a slightly better ATE score than the
system of Ours (w/o Obj) like some sequences such as S3(1) and S4(2)
indicated in italic in Table 1.

4.3. Object reconstruction quality evaluation

Our approach can not only accurately estimate the camera pose, but
also reconstruct the object’s shape in high completeness and quality.
In this subsection, we evaluate our system’s ability for object recon-
struction in terms of both quantitative and qualitative results. We adopt
two metrics are used for object shape reconstruction evaluation [7,23],
i.e., Chamfer Distance (CD) and Completeness (COMP), to evaluate the
quantitative scores. For Completeness score, we use the threshold as
5 cm.

We compare our method against MID-Fusion and MaskFusion,
which are two recent object-level SLAM approaches. Although MID-
Fusion and MaskFusion focus on object-level SLAM in dynamic scenes,
which is different from our goal for static scenes, we perform the
comparison on the same dataset of SceneNet RGBD dataset. One of the
main drawbacks of MID-Fusion in camera tracking is that its tracking
for object instance could be highly unreliable for objects moving out of
view frustum, leading to severe object’s pose drift and poor results of
6

object reconstruction. Since all sequences of our synthetic dataset are
in static environments, we set the object to be static in MID-Fusion to
avoid severe object’s pose drift. For our approach, we implement two
different versions including (1) one without using the object shape and
pose inference, termed as Ours (w/o initial Opt), and (2) one without
using the joint optimization, termed as Ours (w/o joint Opt).

Table 2 lists the object reconstruction results from the five differ-
ent kinds of approaches. We can see that our approach achieves the
lowest surface distance (CD) and highest completeness scores (COMP)
comparing the other four approaches. Benefiting from our accurate
camera pose estimation and neural object shape representation, our
approach can reconstruct more complete objects than MaskFusion and
MID-Fusion. Besides, Ours (w/o joint Opt) achieves better CD (5.15)
and COMP (8.21) scores than Ours (w/o initial Opt) with CD (7.08) and
COMP (12.22), showing that object shape and pose inference plays a
major role in object surface reconstruction. Based on this module, the
joint optimization further improves the object surface reconstruction
quality.

Fig. 4 shows some qualitative results compared with MID-Fusion
and MaskFusion, where the corresponding ShapeNet models are shown
at the bottom for reference. We can see that our approach achieves
more complete and better quality object reconstruction than the tradi-
tional TSDF-fusion method (e.g. MID-Fusion) and surfel-fusion method
(e.g. MaskFusion). Due to the low accuracy camera pose estimation
of MaskFusion which is evaluated in Section 4.2, its estimated object
pose will drift significantly and often leads to unsatisfied object recon-
struction, such as the pink chair in the middle column of MaskFusion
in Fig. 4, and incomplete object reconstruction (e.g. chairs in the first
column in Fig. 4). Furthermore, our deep implicit representation only
represents the object shape using a 128-dimensional vector while MID-
Fusion uses a fixed size volumetric voxels that leads to much more
memory footprint. For example, we only need 512 KB for encoding one
object, which is much less than 64 MB using a 2563 SDF voxels.

4.4. Real world evaluation

We also evaluate qualitative results on ScanNet dataset [25], which
contains a large scale of real-world RGB-D sequence and is anno-
tated with instance-level semantic segmentation. Figs. 1 and 5 show
some visual effects of the object reconstruction results that our system
successfully generates with high-quality reconstruction. The generated
object surfaces are complete, sometimes even better than the ground-
truth mesh (obtained with 3D reconstruction method [17]) benefit from
the neural object priors we used. There would also be some objects that
have not been reconstructed by our approach, which is mainly due to
occlusion and truncation, being one limitation of our approach.

4.5. Runtime

Our system runs on a platform with an Nvidia RTX 3090 GPU
at ∼7 Hz. The average timing of each main component is shown in
Table 3. ‘‘Pre-processing’’ mainly contains points and objects extraction
and data association. ‘‘Tracking’’ represents our proposed hybrid cam-
era tracking. ‘‘JO’’ is the abbreviation of ‘‘Joint Optimization’’. Since
the runtime of tracking and joint optimization is related to the number
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Fig. 4. Qualitative scene reconstruction results on our synthetic dataset, with individual object reconstructions (marked as red and blue boxes) are also listed below. Objects
marked in blue boxes are failure results from some other method. The ground-truth models from ShapeNet are listed at the bottom row for reference.
Table 3
Runtime analysis of our system.

Pre-processing Tracking Tracking/O JO JO/O

Time 67 ms 20 ms 50 ms 592 ms 887 ms

of objects involved, we report average increase in runtime for tracking
or joint optimization when the number of involved objects increased
by one (marked as ‘/O’) and runtime without any objects respectively.
Note that although our deep implicit object representation is more
complex than the voxel occupancy grids used in NodeSLAM [7], our
approach efficiently converts such deep neural representation to recon-
struct heterogeneous object shapes at a fast camera tracking processing
rate comparable with NodeSLAM [7].

4.6. System study

Instance Segmentation. In order to demonstrate the effect of in-
stance segmentation, we make an evaluation between GT and deep
7

models for object instance segmentation. We evaluate two versions of
our approach for different deep model segmentation. One uses Mask
R-CNN [58] which served as classical segmentation model to generate
object instance segmentation, termed as Ours(MaskRCNN). And the
other uses QueryInst [59] which served as SOTA segmentation model,
termed as Ours(QueryInst). Table 4 shows the CD and COMP accuracy
for the ‘Chair’ and ‘Table’ objects using three kinds of instance segmen-
tation respectively. We can see that the accuracy from QueryInst (CD
6.55, COMP 84.23) and MaskRCNN (CD 6.89, COMP 84.19) is slightly
worse than GT (CD 4.90, COMP 86.92), which is reasonable since
the object segmentation quality would directly influence the shape
generation in our approach. However, our approach can still achieve
consistent object reconstruction in different quality of object instance
segmentation, which demonstrates our approach has good robustness
for object generation under different deep models of object instance
segmentation. Some visual comparison results are shown in Fig. 6,
and the last column demonstrates that the object is only partially
reconstructed due to incomplete segmentation and is hard to rectify
through optimization.
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Fig. 5. Qualitative scene reconstruction result from ScanNet dataset. Top row: object reconstructed by our approach. Middle row: objects placed in the scenes. Bottom row:
ground-truth scene mesh from ScanNet.
Fig. 6. Visual comparison of reconstruction result between Mask R-CNN segmentation,
QueryInst segmentation and GroundTruth segmentation.

Parameters. We make a parameter study to evaluate some key
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parameters used in our system including ‘good’ object threshold 𝜏𝑜𝑘,
Table 4
Ablation study based on three different kinds of instance segmentation, including Mask
R-CNN, QueryInst and GroundTruth.

Methods Chair Table

CD COMP CD COMP

Ours(MaskRCNN) 6.89 84.19 11.05 67.96
Ours(QueryInst) 6.55 84.23 11.70 67.36
Ours(GroundTruth) 4.90 86.92 7.67 81.58

‘failed’ object threshold 𝜏𝑓𝑎𝑖𝑙, and the silhouette weight 𝑤1. In the pa-
rameter evaluation, we first sample 𝜏𝑜𝑘 in {0.001, 0.002, 0.005, 0.008,
0.01}, 𝜏𝑓𝑎𝑖𝑙 in {0.01, 0.02, 0.04, 0.08, 0.1} and 𝑤1 in {0.1, 0.2, 0.5,
0.8, 1.0}, and then study the impact of each parameter on the accuracy
of the final result one by one. Fig. 7 shows the ATE, CD and COMP
accuracy curves on average for the three parameters tested on SceneNet
RGB-D dataset we created separately. For parameter 𝜏𝑜𝑘, the ATE error
increases consistently along with the 𝜏𝑜𝑘 increasing. For parameter 𝜏𝑓𝑎𝑖𝑙,
the CD metric increase and COMP metric decrease consistently along
with the 𝜏𝑓𝑎𝑖𝑙 increasing. For silhouette weight parameter 𝑤1, when
weight for silhouette term increases, lower chamfer distance will be
achieved, but completeness metric is not well related to the parameter.

4.7. Limitations

There are some limitations of our approach: (1) we make the
assumption that all objects are placed vertically on the ground, which
will benefit for making good initialization of pose estimation. This may
lead to poor performance when estimating and reconstructing those
standing obliquely on the ground due to bad pose initialization, as
Fig. 8(a) shows. However, since the assumption of vertically placed
objects meets most object cases in indoor scenes, we think such assump-
tion is still a reasonable point and leave its drawbacks as a limitation
for future work. One possible solution would be using a deep model
to predict initial pose guess without any constraint. (2) Thin structure
objects. The thin structure objects would be challenging to detect
completely from 2D CNN, which would not be correctly generated by
our approach, e.g. the thin legs and seating part of the chair shown
in Fig. 8(b). (3) The wrong shape generation caused by occlusion or
truncation. If an object is partially observed with occlusion by other
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Fig. 7. The ATE, CD and COMP metric curves for main parameters in our approach.
Fig. 8. Failure cases of our system, such as objects that stand obliquely on the ground,
thin parts of object, and those mostly occluded by other object.

objects, our approach could not give accurate initial shape estimation,
and thus incapable of optimizing for the final accurate shape generation
(Fig. 8(c)).

5. Conclusion

In this paper, we present a novel object-level RGB-D SLAM system
in static scenes by using deep neural implicit representation for objects.
Our method can effectively learn object shape prior and encode object
as a latent vector for accurate and complete object reconstruction while
saving large memory costs. Benefiting from the learned neural object
priors, our proposed accurate camera tracking and joint optimization
for object shape, object pose and camera pose for the final high-quality
object surface reconstruction. We have shown our approach achieves
better performance for accurate camera/object pose estimation and
high quality of object shape reconstruction, evaluated both on synthetic
and real-scan scenes. In the future, we hope to further improve our
system to solve the drawbacks aforementioned for a better object-level
SLAM with more robust camera tracking and better object surface
reconstruction quality, or even in dynamic scenes. Besides, the effi-
ciency of our system is still unsatisfactory as shown in Table 3, and
the bottleneck lies in the joint optimization, which performs the neural
network inference. Jittor [60], as a new deep learning framework, is
better at training and inference for neural networks due to its special
meta-operator fusion and unified graph execution. As future work, we
will implement the system with Jittor and release the code.
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