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RGAvatar: Relightable 4D Gaussian Avatar from
Monocular Videos
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Abstract—Relightable 4D avatar reconstruction which enables high fidelity and real-time rendering continues to be a crucial but
challenging problem, especially from monocular videos. Previous NeRF-based 4D avatars enable photo-realistic relighting but are too
slow for rendering, while point-based or mesh-based 4D avatars are efficient but have limited rendering quality. The recent success
of 3D Gaussian Splatting, i.e., 3DGS, has inspired a series of impressive 4D Gaussian avatars, however, most of which only focus on
faithful appearance reconstruction but are not relightable. To address such issues, this paper proposes a new Relightable 4D Gaussian
Avatar, i.e., RGAvatar, tailored for high fidelity relightable rendering from monocular videos. Our key idea is to introduce a new relightable
4D Gaussian representation, based on which we can directly perform high fidelity Physically Based Rendering, and an effective joint
learning mechanism for compact 4D Gaussian reconstruction with SDF regulation and accurate materials and lighting decomposition.
By comparing with previous state-of-the-art approaches, RGAvatar can significantly outperform previous approaches in relightable
rendering quality and speed. To our best knowledge, RGAvatar contributes a new state-of-the-art 4D Gaussian avatar from monocular
videos, which enables high fidelity relightable rendering in a quite efficient manner.

Index Terms—4D Gaussian Splatting, Relightable 4D Gaussian Avatar, Relightable rendering, Neural head avatars.

✦

1 INTRODUCTION

AUTOMATIC reconstructing animatable head avatars [1],
[2] is an active research topic in computer graphics

and computer vision communities, which has a wide range
of applications in VR/AR, video games, teleconferencing,
movie production, etc. There has been remarkable progress
on animatable avatar creation work using single commodity
sensors as input [3], [4], [5], [6], especially inspired by the
impressive success of NeRF [7], [8], [9] as neural implicit
representation, which have shown impressive applications
such as novel view synthesis [4], novel expression [10], [11],
[12], [13] and novel pose control [14], [15], and have also
significantly accelerated the training process within even
minutes [16], [17]. However, most previous 4D avatars focus
on accurate avatar reconstruction, but couldn’t support any
relighting applications.

To relight objects, a typical approach is to perform
Physically Based Rendering under new illumination with
known or estimated material properties. One mainstream
method is to directly learn relightable appearance model
from lightstage devices, which show promising relighting
for static [19], [20], [21], [22] and dynamic scenes [23], [24],
[25]. However, those approaches are not feasible for 4D
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avatars from monocular videos. Another kind of relighting
approach is neural inverse rendering [26], [27], [28], [29],
which explores more flexible representation for unknown
materials and lighting estimation from multi-view images or
spare-view/monocular videos. But their essential require-
ment of light visibility estimation or tracing is often too
slow to perform even for static scenes, which would be
more time-consuming for 4D avatar scenario. For example,
the latest work [30] still costs up to 60s when perform-
ing relightable rendering each frame. On the other hand,
some recent works adopts to use explicit representation
with differential rendering, such as points (PointAvatar [31])
and mesh (FLARE [18]), for efficient relightable 4D avatar
reconstruction. However, the rendering quality for these
approaches are still limited mainly due to the limited ability
for point or mesh based rasterization.

The recent success of 3D Gaussian Splatting [32],
i.e., 3DGS has inspired many impressive 4D Gaussian
avatars [33], [34], [35], [36], [37]. However, most of those 4D
Gaussian avatars only focus on accurate appearance recon-
struction, but couldn’t support any relightable applications.
Recently, RGCA [38] propose a relightable Gaussian codec
avatar model which enables real-time relighting of human
head with impressive rendering quality. But this work still
need known illumination captured from lightstage device
as input, which couldn’t work for monocular videos.

In this paper, we propose a new Relightable 4D Gaussian
Avatar (RGAvatar) model from monocular videos, which is
especially tailored to high fidelity relightable human head
rendering in a quite efficient manner. The key component
of RGAvatar is a new relightable 4D Gaussian representa-
tion. Instead of approximating the Gaussian’s appearance
with spherical harmonics (SH) diffuse color and spheri-
cal Gaussian (SG) specular color as like RGCA [38], we
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Fig. 1. This paper proposes a novel relightable 4D Gaussian avatar (RGAvatar) from monocular videos. Given RGB frames of a person’s fixed
viewport monocular video (left), we reconstruct the RGAvatar by accurately learning the relightable 4D Gaussian representation (R-4DGS) with
compact 4D Gaussian reconstruction and accurate neural materials and incident light decomposition (middle). Our RGAvatar enables flexible
novel view/pose/expression synthesis while performing relightable rendering using changing environmental light (right), which achieves much better
rendering quality than previous approaches (FLARE [18]) and at very efficient rendering speed. RGAvatar contributes to be a new state-of-the-art
relightable 4D avatar, in terms of both high fidelity relightable rendering quality and efficient rendering speed.

formulate a new relightable 4D Gaussians representation,
which can perform Physically Based Rendering directly for
more accurate and high fidelity appearance modeling. More
importantly, we provide an effective joint learning of the
relightable 4D Gaussians, which aims at a compact 4D
Gaussian reconstruction and accurate BRDF materials and
incident lighting decomposition simultaneously. Our key
observation for the joint learning mechanism is to introduce
effective regularization from an extra SDF field simultane-
ously learnt for the accurate learning of 4D Gaussian’s ge-
ometry, materials and incident lighting factors from monoc-
ular videos. Once the relightable 4D Gaussians accurately
learnt, we can efficiently perform relightable rendering for
the avatar in high fidelity rendering quality.

To evaluate the effectiveness of RGAvatar, we have con-
ducted extensive evaluation on public dataset by comparing
with previous approaches. From the comparison, RGAvatar
can achieve better 4D avatar reconstruction than previous
4D avatars such as INSTA [17], PointAvatar [31], FLARE [18]
and recent 4D Gaussian avatars such as FlashAvatar [35] and
SplattingAvatar [37]. For relighting application, RGAvatar
can achieve significant better relighting quality than PointA-
vatar [31] and FLARE [18] while maintaining very efficient
rendering speed. We summarize the main contribution of
this paper in the following three folds:

1) We introduce a new relightable 4D Gaussian repre-
sentation and a compact 4D Gaussian reconstruction,
providing accurate geometry prior for materials and
lighting decomposition.

2) We provide a neural material and lighting decompo-
sition to learn the relightable 4D Gaussian represen-
tation, achieving high accurate geometry, material
and incident lighting estimation.

3) We propose RGAvatar framework to efficiently
reconstruct high fidelity relightable 4D Gaussian
avatars from monocular videos, which significantly
outperforms previous approaches as a new SOTA
relightable 4D avatar method.

2 RELATED WORKS

Neural 4D Avatars. Following the pioneering work of
3DMM [39], plenty of works have made considerable efforts
to efficiently generate realistic face models by introducing
corrective blendshapes from subject shape [40], head pose
and expression [41], emotion [42], and even biological fac-
tors such as bones and muscle [43]. These 3D morphable
face models can be served as explicit representations for
face priors, which benefit various tasks including face recon-
struction [44], [45], [46], photo-realistic face synthesis [47],
[48], and face reenactment [49], [50]. The recent work of
NHA [4] proposed a full-head avatar model with view-
dependent texture mapping. However, most of the current
3D morphable face models mainly focus on the face part
with topology-fixed template mesh, thus limiting the ren-
dering quality.

The impressive works such as NerFACE [3], Head-
NeRF [5], IMAvatar [6], HAvatar [12] and LatentAvatar [16]
proposed to utilize NeRF [7], [8], [9] for implicit head avatar
generation. However, such dynamic NeRF-based deforma-
tion is over time-consuming, which would cost hours or
even days for a single subject’s head avatar training. NeRF-
BlendShape [10] reduces the training time to 20 minutes by
introducing a hash table-based voxel field representation.
AvatarMAV [11] decouples the motion and appearance with
motion-aware neural voxels, which further reduces the head
avatar training into 5 minutes.

On the other hand, DoubleField [51] provides a 3D
avatar reconstruction by leveraging a neural surface field
to guide the NeRF learning for high fidelity geometry
reconstruction and rendering simultaneously, even under
sparse-view scenarios. Some approaches adopt to use the
3D-Aware GAN to generate high fidelity controllable 3D
avatars, such as Next3D [52] and AniPortraitGAN [53].
Very recently, the success of 3D Gaussian Splatting has
inspired a serials of 4D Gaussian avatars [33], [34], [35],
[36], [37], which achieves impressive head avatar creation
results. However, most of previous neural 4D avatars focus
on the avatar reconstruction but didn’t support relightable
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Fig. 2. The pipeline of RGAvatar. Given monocular video input, we propose to learn the R-4DGS with two learning stages. In the first stage, we
aims at a compact 4D Gaussian reconstruction (left), which forces the R-4DGS compactly coherent to the underlying surface of an extra SDF
field Fg(left top). We deform the canonical R-4DGS Ḡ = {ḡ} to g using a deformation field D, in which a Motion Deformation Module is used
to deform the centroid position µ̄ from canonical state to dynamic µ, and a Shape Deformation Module to deform the rotation and scale. In the
next stage, we perform a neural material and lighting decomposition (right), by leveraging strong geometry prior from the compact 4D Gaussian
reconstruction learning to guide the geometry-aware light visibility prediction using network Fv , which takes the SDF encoding fsdf and LBS
deformation encodingflbs as input. This tailored visibility prediction module leading to more accurate materials (albedo b, roughness r and fresnel
reflectivity f0) and incident light (Lenv) learning for the 4D Gaussians.

rendering. In contrast, this paper contributes a relightable
4D avatar, which enables high fidelity relightable rendering
at very efficient speed.

Neural Relighting. There have been much progress
made to learn relightable models using lightstage de-
vices [19], [20], [21], [22], [23], [24], [25], and achieved
impressive relighting results. To achieve more flexible re-
lighting approaches which get rid of the usage of lightstage,
neural inverse rendering [26], [27], [28], [29] is introduced
to learn relightable 3D assets from multi-view images or
spare-view/monocular videos. Munkberg et al [54] adopts
neural SDFs to reconstruct high quality relightable 3D as-
sets. Recently, SwitchLight [55] proposes a 2D relighting
approach for impressive human portrait relighting results
by combining a physics-guided architecture with a pre-
training framework. Meanwhile, SwitchLight mainly focus
on 2D image-based human portrait relighting, but is not
feasible for controllable 3D head avatar relighting tasks.

For relightable 3D head avatars, some approaches [56],
[57] leverage deformable priors from 3DMM [39] to learn
neural materials and lighting from image or videos. Re-
cently, Xu et al [30] propose to reconstruct relightable
avatars by modeling appearance color with spherical har-
monics (SH) diffuse color and spherical Gaussian (SG) spec-
ular color, which achieves impressive relightable render-
ing results. However, most of those previous approaches
need very time-consuming light visibility tracing opera-
tions, which are limited for real-time relightable rendering
applications. On the other hand, some recent works adopts
to use explicit representation with differential rendering,

such as points (PointAvatar [31]) and mesh (FLARE [18]),
for efficient relightable 4D avatar reconstruction. However,
their rendering quality are still limited mainly due to the
limited ability for point or mesh based rasterization.

Very recently, RGCA [38] attempts to learn efficient
relightable avatar based on 3D Gaussian splatting, but
still requires known input lighting for accurate materials
learning. Unlike previous approaches, this paper presents a
new relightable 4D Gaussian representation, and accurately
reconstruct a relightable 4D Gaussian avatar for high fidelity
relightable rendering, and achieves fast rendering speed
from monocular videos.

3 METHOD

Given a frame sequence I = {I1, ..., IN} of an individ-
ual person’s portrait video, our goal is to reconstruct an
animatable head avatar, called RGAvatar, represented by
a set of relightable 4D Gaussians G(ϕ, θ, Lenv), where ϕ, θ
represents the expression and pose parameters of FLAME
model [41] respectively and Lenv represents the environ-
mental lighting. RGAvatar’s key component is a joint learn-
ing mechanism to reconstruct the compact 4D Gaussians,
and accurately decompose the materials and incident light-
ing simultaneously from frame sequence I . Once accurately
learnt, we can reanimate the head avatar using FLAME [41]
parameters ϕ, θ for novel view/pose/expression synthesis,
while performing relighting with changing environmental
lighting Lenv simultaneously. The system overview of RGA-
vatar is shown in Fig. 2.
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Fig. 3. The illustration of a person’s relightable 4D Gaussian representa-
tion in canonical space (left) and its PBR rendering image in deformed
space controlled by novel expression and pose parameters ϕ, θ (middle).
Simultaneously, we can perform relighting using a changing environ-
mental light Lenv during novel pose/expression synthesis (right).

3.1 Relightable 4D Gaussians Representation

To enable relightable 4D Gaussian avatar reconstruction,
we first introduce a new relightable 4D Gaussian represen-
tation, i.e., R-4DGS, which can perform Physically Based
Rendering for relighting applications. In this paper, we
define a 4D avatar’s R-4DGS G(ϕ, θ, Lenv) = {gi|i ∈ M}
as a set of 4D Gaussians gi (M is the number), which are
deformed from their canonical space Ḡ = {ḡi|i ∈ M} using
a deformation field D.

Specifically, we define g = {µ, ψ, s, o, c, n, b, r, f0, v}
with µ, s, o, c representing the centroid position, scale, opac-
ity and SH parameter respectively (as like the original
3DGS), n being the normal, ψ being the 1-DOF rotation
angle around the normal, b, r, f0 representing the BRDF
material parameters albedo, roughness and fresnel reflectiv-
ity at normal incidence respectively, and v representing the
light visibility. As shown in Fig. 3, we deform a canonical
ḡ = {µ̄, ψ̄, s̄, ō, c̄, n̄, b̄, r̄, f̄0, v̄} to g using a deformation field
D, and compute its Gaussian-level PBR color cpbr(ω0) by
performing Physically Based Rendering directly on each R-
4DGS g for each given view ray ω0. Finally, we compute the
PBR color image by splatting the 4D Gaussians PBR color
using a PBR splatting.

We group the parameters of each R-4DGS g into six
parts: (1) motion part gm = {µ} which is related to the
dynamic motion of 4D Gaussians, (2) shape part gs = {ψ, s}
which corresponds to the shape of each 4D Gaussian, (3)
appearance part ga = {o, c} for the appearance component,
(5) material part gmat = {b, r, f0} and (6) surface properties
part gl = {n, v} which counts for the surface properties
for rendering. Since the material part gmat represents the
intrinsic materials of each 4D Gaussian, we keep this com-
ponent fixed equivalent to the one in the canonical state, i.e.,
gmat = ḡmat. For computation efficiency, we also keep the
appearance part ga fixed, i.e., ga = ḡa.

Deformation field D. As shown in Fig. 4, we build up
the deformation field D = {Dm,Ds} with two components
(Dm,Ds), which deform the motion part gm and shape part gs

from the corresponding canonical part ḡm, ḡs respectively.
Specifically, we follow PointAvatar [31] to construct Dm,
which deforms the centroid position µ̄ from canonical state
to dynamic µ by combining the linear blend skinning (LBS)

Fig. 4. The illustration of Deformation field. For R-4DGS’s centroid posi-
tion deformation, we utilize a network Fm to predict pose blendshapes
P, expression blendshapes E , blend skinning weights W and eye blink-
ing blendshapes I. Then the linear blend skinning is performed using
FLAME parameters θ, ϕ, e to calculate the dynamic centroid position µ
and LBS deformation encoding flbs. For shape deformation, we employ
a network Fs, which takes flbs and SDF encoding fsdf as input, to
predict the the scale offset ∆s and rotation offset ∆ψ.

and an extra position offset field ∆µ as:

µ = Dm(µ̄) (1)

= LBS(µ̄+ BP (θ,P) + BE(ϕ, E) + BI(e, I), θ,W) + ∆µ,

where BP (·),BE(·) compute the pose and expression
offsets using the blendshape components P, E respectively,
W is the blend-skinning weights, θ, ϕ are the pose and
expression parameters. Additionally, to adress the issue of
eye blinking in PointAvatar [31] and FLARE [18], we com-
pute extra eye blinking offsets BI(·) by incorporating the
eye blinking parameters e and corresponding blendshape I
from MICA [58]. Specifically, we train a MLP-based network
Fm which, given canonical centroid position µ̄ as input,
returns the pose blendshapes P ∈ R4×9×3, expression
blendshapes E ∈ R100×3 ,blend skinning weights W ∈ Rnj

and eye blinking blendshapes I ∈ R2×3 i.e.,

Fm(µ̄) → P, E ,W, I.

To construct the shape deformation Ds, we train another
MLP-based network Fs that, given the geometry feature fg
encoded from the canonical Gaussian state (see the details
in Sec. 3.2) as input, returns the scale offset ∆s and rotation
offset ∆ψ,

gs = ḡs ⊕Fs(fg)

=⇒ s = s̄+∆s, ψ = ψ̄ ⊗∆ψ. (2)

PBR Rendering. Given any outgoing light direction ω0,
as shown in Fig. 3, we propose to compute the outgoing
light radiance for each R-4DGS g by directly performing the
Physically Based Rendering(PBR) . Specifically, following
the rendering equation [59], the PBR color cpbr(ω0) for each
g in the Gaussian level is computed as:

cpbr(ω0) =

∫
Ω
f(ωo,ωi)L(ωi)

(
ωi · n

)
dωi, (3)

where f(ωo,ωi) models the BRDF properties of each g,
L(ωi) represents each 4D Gaussian g’s incident light along
the incoming light direction ωi, n is the normal vector of g,
and Ω signifies the hemispherical domain above the surface
with the centroid position of g as the hemisphere center.

We adopt the simplified Disney BRDF model [60] and
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divide the BRDF function f(ωo,ωi) into diffuse term fd and
specular term fs as:

fd =
b

π
,

fs(ωo,ωi) =
D(h; r) · F (ωo,h; f0) ·G(ωi,ωo, h; r)

(n · ωi) · (n · ωo)
(4)

where D is the microfacet distribution function, h is the
half-vector, F is the Fresnel term, and G is the geometric
attenuation factor.

As for the incident light L(ωi), we assume that the
person’s monocular video is captured under a global en-
vironment light, and compute the incident light L(ωi) for
each 4D Gaussian g as:

L(ωi) = V (ωi) · Lenv(ωi), (5)

where V (ωi) is the light visibility term of each 4D Gaussian
g and Lenv(ωi) is the global environmental light to be learnt.
Both terms are parameterized as SH parameters.

So overall, when computing the PBR color for each
4D Gaussian in practical, we utilize Fibonacci sampling to
sample Ns incident directions across the hemisphere space
to numerically integrate the rendering equation [60]. The
PBR color cpbr(ωo) of every 4D Gaussian g is then given by:

cpbr(ωo) =
Ns∑
i=0

(fd + fs(ωo,ωi))L(ωi)(ω · n)∆ωi. (6)

PBR Splatting. After we compute the PBR color cpbr(ωo)
for each 4D Gaussian g, we render the PBR image Cpbr

through a PBR splatting, which performs an alpha-blending
of the PBR color cpbr(ωo) splatted on the image as:

Cpbr =
∑

i∈Ncover

Tiαic
i
pbr, Ti =

i−1∏
j=1

(1− αj), (7)

where Ncover is the set of 4D Gaussians which are splatted
on the image covering the same image pixels.

Discussion. Given the definition of our R-4DGS above,
we can render two kinds of color image using the origi-
nal Gaussian splatting and our PBR splatting respectively.
Specifically, we can render the appearance color image Capp

by performing the 3D Gaussian splatting using the first
five parameters of our R-4DGS, i.e., (µ, ψ, s, o, c), where
Capp bakes the shading and shadow information together.
Similarly, we can render the PBR color image Cpbr by
performing our PBR rendering and splatting. In practical,
we mainly use appearance color image Capp for the compact
4D reconstruction learning, and use the PBR color image
Cpbr for the neural material and lighting decomposition
respectively as shown in Sec. 3.2.2 and Sec. 3.3.2.

3.2 Compact 4D Gaussian Reconstruction

Previous 4D Gaussian avatars [33], [34], [35], [36] have
shown impressive 4D Gaussian reconstruction by disen-
tangling the 4D Gaussians’ geometry from the appearance
model. However, those solutions are not effective in our
scenario, since we need to accurately decouple the 4D
Gaussians’ geometry, materials and incident lighting factors
from the appearance rendering simultaneously, which is

more complicated than those previous 4D Gaussian avatars.
Instead, we propose to perform a compact 4D Gaussian re-
construction by forcing the 4D Gaussians compactly coherent
to the underlying surface of the dynamic geometry, which
is inspired by the recent progress for compact 4D Gaussian
learning [61], [62].

3.2.1 Geometry Constraint Scheme
As shown in Fig. 2, we introduce an extra signed distance
function (SDF) field in the canonical 4D Gaussian space, and
leverage geometry and normal regularization from the SDF
field to supervise a compact 4D Gaussian reconstruction
learning.

SDF Field. As like PointAvatar [31], we create a MLP-
based geometry network Fg that predicts the signed dis-
tance s for every position x ∈ R3 in canonical 4D Gaussian
space, i.e., s = Fg(x) ∈ R. Using the geometry network Fg ,
we propose to force the centroid position µ̄ of each canonical
4D Gaussian ḡ to be located on the underlying surface Gs

of the SDF field. The normal vector ns for each on-surface
point xs ∈ Gs can be computed by the back propagation of
the geometry network Fg , i.e., ns = ∂Fg

∂xs
.

Normal Regularization. On the other hand, after the
canonical 4D Gaussian ḡ is deformed to g in the deformed
space, we force the normal vector n of g equivalent to
deformed normal nµ at µ measured by the deformation of
SDF field. Following PointAvatar [31] and Eq. (1), we can
compute the deformed normal from the nµ at µ using

nµ = lµ
∂Fg

∂µ̄
(
∂Dm(µ̄)

∂µ̄
)−1,

where lµ is a normalizing scalar to ensure the normal is
of unit length, µ̄ is the centroid position of canonical 4D
Gaussian. ḡ. ∂Fg

∂µ̄ and ∂Dm(µ̄)
∂µ̄ can be efficiently computed

by back propagation of the MLP-based network Fg and
Fm respectively. Thereafter, we set the normal vector n of
g to be the deformed normal nµ during the 4D Gaussian
reconstruction, i.e., n = nµ.

So overall, during the 4D Gaussian reconstruction, we
constraint the canonical 4D Gaussians located on the un-
derlying surface of the SDF field (using the geometry regu-
larization), and approximate the deformed normal vector
of each 4D Gaussian equivalent to the deformed normal
measured from the deformed space of the SDF field (using
the normal regularization).

Geometry Features. Besides, as shown in Fig. 2, we also
extract the geometry feature fsdf of the SDF field to build
up the geometry feature fg in the shape deformation Ds

as in Eq. (2), which also leverage geometry prior from SDF
field to guide the 4D Gaussian’s deformation field learning.
Specifically, we set fsdf as the latent vector of penultimate
layer of the MLP-based network Fg , and construct the
geometry feature fg = {fsdf , flbs} by concatenating fsdf
and the deformation encoding of the LBS deformation po-
sition flbs. We construct the deformation encoding flbs to
represent the unique deformation state by concatenating the
canonical centroid position µ̄, deformed centroid position µ,
position offset ∆µ, normal n and an additional centroid po-
sition deformed only by pose parameters µ′, which benefits
to construct a more descriptive deformation encoding for
better deformation field learning.
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3.2.2 Compact Reconstruction Training Objectives
For a compact 4D Gaussian reconstruction, we optimize the
canonical R-4DGS Ḡ = {ḡi|i ∈ M}, three MLP-based net-
works (Fm,Fs,Fg) (for the motion deformation network,
the shape deformation network and the geometry network
of SDF respectively) by considering the following factors:

Appearance Rendering Loss. We perform the Gaussian
splatting for the 4D Gaussians to achieve the appearance
rendering imageCapp, and use the input imageCgt as super-
vision for the 4D Gaussian reconstruction learning. Besides,
we also use perceptual loss Llpips [63] (with VGG [64] as the
backbone) to measure the perceptional similarity between
appearance rendering image Capp and supervision image
Cgt, thus introducing a appearance rendering loss LC as

LC =L1(Capp, Cgt) + λlpipsLlpips(Capp, Cgt)+

λmouthL1(Capp · Kmouth, Cgt · Kmouth)
(8)

where L1(·) represents the L1 distance, Kmouth is the
mouth mask, λmouth,λlpips are weight parameters.

Flame Deformation Regularization. Similar with pre-
vious 4D avatars [6], [18], [31], we adopt to regularize the
prediction of Fm in the motion deformation field Dm using
the blendshapes and LBS weights from FLAME [41], by
formulating a FLAME deformation regularization Lflame as

Lflame =
1

N

N∑
i=1

(λe∥Ei − Êi∥2 + λp∥Pi − P̂i∥2+

λw∥Wi − Ŵi∥2) + λI∥Ii − Îi∥2.

(9)

where E ,P ,I ,W are the predicted expression, pose, eye-
blinking blendshapes and blend skinning weights respec-
tively, and Ê ,P̂ ,Ŵ ,Î are those from FLAME model.

SDF Regularization. With the aid of SDF field, we can
trace the underlying surface Gs by extracting the zero level
set of Fg . Besides, we can also use the Eikonal regularization
for all the sampled points xe in the field, i.e., |∇xe| = 1.
Specifically, we use a SDF loss Lsdf performed on the cen-
troid positions of all canonical 4D Gaussians, and a Eikonal
loss Leik performed on the sampled positions as

Lsdf = ∥SDF (µ̄)∥2 , (10)

Leik = (∥∇xeSDF (xe)∥ − 1)
2
. (11)

So overall, we combine the above regularization loss func-
tions to formulate a 4D Gaussian reconstruction loss Lr

during the 4D Gaussian reconstruction learning as

Lr = λcLC + λflameLflame + λsdfLsdf + λeikLeik (12)

Besides, to accurate reconstruct the interior area of
mouth, we also introduce a mouth interior modeling during
the compact 4D Gaussian reconstruction, please refer to the
Appendix for more details.

3.3 Neural Material and Lighting Decomposition
After the 4D Gaussians are compactly reconstructed, we
also estimate the 4D Gaussians’ material and incident light
factors by decomposing them from the appearance. Ac-
cording to the PBR rendering for each 4D Gaussian in Eq.
(6), since the BRDF material parameters b, r, f0 and global
environmental lighting Lenv are intrinsic components and

keep fixed, the only unknown component that we need to
dynamically estimate is the light visibility v.

3.3.1 Geometry-Aware Light Visibility Prediction

For efficient computation, we use another MLP-based net-
work Fv that, taking the geometry feature fg as input,
returns the SH coefficients of dynamic light visibility, i.e.,
v = Fv(fg). What’s more, for a more accurate material
and lighting decomposition, we propose to leverage geom-
etry prior from the compact 4D Gaussian reconstruction,
which can make geometry-aware light visibility prediction
as strong regularization thus leading to more accurate es-
timation of materials and incident lighting. Specifically, we
construct the light visibility network Fv and shape defor-
mation network Fs with the same network structure, and
share weights between Fv and Fs. In this way, we implicitly
decode the light visibility using the geometry prior from
the compact 4D Gaussian reconstruction to make accurate
neural material and lighting decomposition. Furthermore, it
is often too time-consuming to get the accurate visibility su-
pervision from ray tracing, which will significantly decrease
the training speed. To make a more efficient training, we
propose to learn visibility using F v with effective regular-
ization, recovering reasonable visibility estimation.

3.3.2 Decomposition Training Objectives

To effectively decouple the geometry, materials and inci-
dent lighting, we jointly learn the canonical R-4DGS Ḡ =
{ḡi|i ∈ M}, four MLP-based networks (Fm,Fs,Fg,Fv)
and the global environmental lighting Lenv by considering
the following factors:

PBR Rendering Loss. We perform the PBR splatting
for the 4D Gaussians to achieve the PBR rendering image
Cpbr , and use the input image Cgt as supervision for the 4D
Gaussian reconstruction learning, which formulates a PBR
rendering loss Lpbr as

Lpbr = L1(Cpbr, Cgt) + λlpipsLlpips(Cpbr, Cgt). (13)

Shading Regularization. As like previous work [18],
[65], we adopt a white light regularization over the shading
component with a regularization loss Llight as

Llight =
∑
c

(Sc −
1

3

∑
i

Si), i, c ∈ {R,G,B}. (14)

where Sc is one channel of the diffuse shading.
BRDF Bilateral Smoothness. Besides, we also use the

bilateral smoothness [65] to regularize the roughness, albedo
and fresnel reflectivity parameters, but additionally adding
a skin region roughness smoothness to weight the rough-
ness in skin region not change too drastically as

Lsmooth,R = ∥∇R∥ exp(−∥∇Cgt∥)+
λskin∥∇(R · Kskin)∥ exp(−∥∇Cgt · Kskin∥),

where R is the splatted (rendered) roughness map, given by∑
i∈N Tiαiri, Kskin is the preprocessed skin mask. Similarly,

the fresnel reflectivity and albedo smooth loss are:

Lsmooth,F0 = ∥∇F0∥ exp(−∥∇Cgt∥),

Lsmooth,B = ∥∇B∥ exp(−∥∇Cgt∥),
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Fig. 5. The visual results of our R-4DGS reconstruction of different subjects. Specifically, We show the diffuse/specular components, normal, BRDFs
and relighting results under different changing environmental lights.

where F0 is the splatted fresnel reflectivity map, B is the
splatted albedo map. The full BRDF smooth loss is sum:

Lsmooth = Lsmooth,R + Lsmooth,F0
+ Lsmooth,B (15)

Albedo Regularization. We realize the regularization of
the albedo prediction using an albedo regularization Lb as

Lb = L1(B,Btarget) + λbLSSIM (B,Btarget), (16)

whereB,Btarget are the splatted albedo map and referential
albedo map with reduced shadows and highlights, respec-
tively. The determination of Btarget relies on an approxima-
tion method. For details regarding the calculation ofBtarget,
Please refer to the Appendix.

Visibility Regularization. The visibility term inferred
by Fv sometimes can be entangled with the lightness of
skin tone. To capture shadows rather than skin tone dur-
ing the optimization process, we introduce a novel visibil-
ity regularization term, encouraging the ambient occlusion
map [65](averaged visibility) CV that approximates white.
This decoupling process leads to a more reasonable visibil-
ity.

LV = L1(CV , Cwhite). (17)

Overall, we combine the above regularization loss func-
tions together to learn an accurate material and lighting

decomposition using loss function Lml as

Lml = λpbrLpbr+λlLlight+λalbedoLb+λsLsmooth+λvLV .
(18)

4 EXPERIMENTS

4.1 Implementation Details
Data Reprocessing. For the given input RGB frames, we
adopt MICA [58] as 3D avatar tracker to extract the pose
and expression parameters for preprocessing of each frame.
Besides, we also extract eye-blinking parameters by MICA,
and perform the linear blend skinning (LBS) in the motion
deformation field by combining the pose blendshapes, ex-
pression blendshapes, blend skinning weights from FLAME
model [41] and eye-blinking blendshapes from MICA.

Lightweight Networks. We use a lightweight MLP to
construct Fm in the motion deformation field with net-
work structure as [128, 128, 128, 128], and use softplus as
activation function to predict the shape, pose, expression
blendshape components. Similarly, we also use a four layers
MLP to construct Fs and Fv , with network structure is
[256, 256, 256, 256] to predict the shape components of 4D
Gaussian and light visibility respectively. For the geometry
network Fg in the SDF field, we use the similar MLP
provided by PointAvatar [31] to predict signed distance.
Please refer to our Appendix for the details of the network
structures of Fm, Fs,Fv and Fg respectively.
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Training Details. For compact 4D Gaussian reconstruc-
tion, we set the maximum training epoch as 60. For neural
material and lighting decomposition, we set it as 25 epochs.
In each training epoch, we randomly sample half of the
frames from the training set as supervision for both appear-
ance render loss and PBR rendering loss respectively. We
implemented the full system using PyTorch framework, and
adopt the Adam optimizer to perform RGAvatar learning.
All of the training and evaluation experiments are per-
formed on a platform with one RTX 3090Ti GPU.

Canonical R-4DGS Initialization. We adopt the same
strategy from previous approaches [34], [35] to perform the
canonical R-4DGS initialization. Specifically, we uniformly
sample 28000 points from the canonical FLAME template
mesh as centroid positions of the canonical R-4DGS initial-
ization. After initialization, similar to FlashAvatar [35], we
fix the number of Gaussians and avoid pruning and densifi-
cation during the optimization process to reduce instability
such as Gaussians number explosion for efficiency.

4.2 Dataset
To perform training and evaluation of RGAvatar, we ran-
domly collect a dataset with individual persons’ fixed
viewport monocular videos from publicly released datasets,
i.e., NeRFace [3], NHA [4], NeRFBlendShape [10], PointA-
vatar [31], and INSTA [17], which count for 12 subjects.
Besides, we also captured extra 3 subjects using a fixed
viewport webcam, thus making in total a dataset with 15
subjects in our collected dataset to perform the training
and evaluation. In average, each subject’s monocular video
has around 3000 RGB frames, with image resolution set as
512 × 512. During the network training, we sample half of
the frames for training, and the left frames for evaluation.

4.3 R-4DGS Reconstruction Evaluation
We first evaluate the 4D avatar reconstruction quality of
RGAvatar, including the R-4DGS’ geometry (4D Gaus-
sians and normal), BRDF materials (albedo, roughness and
Fresnel reflectivity). Besides, we also show the ambient
occlusion map, which is the averaged visibility of sam-
pled incident light directions and is rendered using this
averaged visibility value vavaragefor splatting, given by∑

i∈N Tiαivavarage(i). Fig. 5 shows the R-4DGS recon-
struction results of one subject from our collected dataset.
Benefiting from compact 4D Gaussian reconstruction, we
can see that our approach can accurately reconstruct the 4D
Gaussians compactly approximate the underlying surface of
the 4D avatar’s dynamic geometry, and the splatted normal
image also demonstrates accurate prediction of the normals,
which are coherent to the geometry.

Relighting Evaluation. Based on the accurate R-4DGS
reconstruction, we then evaluate the relighting quality by
giving various changing environmental lights. As shown in
Fig. 5, we demonstrate the relighting results when given
some environmental lights, from soft lights to brighter
lights. We can see that our approach can achieve high
realistic relighting quality given different environmental
lighting robustly. Besides, we also perform relighting under
different novel pose and expression synthesis. As shown in
Fig. 5, when the 4D avatar is animated using novel pose and

TABLE 1
Quantitative comparison on the test set of our collected dataset from

different comparison approaches, including INSTA [17],
FlashAvatar [35], SplattingAvatar [37] (abbreviated as SPLAvatar for

simplicity), PointAvatar [31], FLARE [18] and Ours, in terms of PSNR,
SSIM, LPIPS, MSE and L1 accuracy metrics.

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ L1↓
PointAvatar 28.6733 0.9279 0.0564 0.0375 0.0117

FlARE 25.8226 0.9097 0.0623 0.05319 0.0139
INSTA 27.2983 0.9423 0.0653 0.0485 0.0129

SPLAvatar 28.8963 0.9390 0.0540 0.0382 0.0109
FlashAvatar 28.5026 0.9474 0.0447 0.0379 0.0113

Ours 29.5255 0.9395 0.0414 0.0346 0.0095

expression parameters, our approach can also achieve high
quality relighting results, which is benefit from the accurate
relightable 4D Gaussians learning by our approach. Please
refer to our supplemental video for dynamic visualization
of the results.

4.4 Comparisons with State-of-the-Art 4D Avatars

To evaluate the effectiveness of our approach, we conduct
comparison experiments between our approach and the
state-of-the-art 4D avatars for monocular reconstruction, in-
cluding INSTA [17], FlashAvatar [35], SplattingAvatar [37],
PointAvatar [31] and FLARE [18]. Here the previous five
avatars can be divided into two types: (1) non-relightable
4D avatars such as INSTA, FlashAvatar and SplattingA-
vatar, where we view INSTA as the representative method
for previous NeRF-based 4D avatars, and FlashAvatar and
SplattingAvatar are two recent 4D Gaussian avatars. (2)
Relightable 4D avatars including PointAvatar and FLARE.

When performing the comparison, we use the public
release demo code for INSTA1, FlashAvatar2, SplattingA-
vatar3, PointAvatar4 and FLARE5 with the default settings
for a fair comparison. Besides, since PointAvatar requires up
to 80GB GPU memory storage which is much larger than
other comparing approaches, we downsample the points
number following the author’s suggestions to reduce GPU
memory consumption for fair comparison.

Quantitative Comparison. We first conduct quantitative
comparison between these comparison approaches, by eval-
uating the rendering quality of predicted images in terms of
accuracy metrics including PSNR, SSIM, LPIPS, MSE and L1
metrics, on the test set of our collected dataset. Table 1 shows
the quantitative comparing results of those comparing ap-
proaches. We can see that our approach can achieve better
PSNR accuracy than previous approaches for high fidelity
rendering quality, and consistently better LPIPS, MSE and
L1 accuracy values, which means that our approach can
get consistently better 4D avatar reconstruction quality than
previous approaches.

1. https://github.com/Zielon/INSTA
2. https://github.com/USTC3DV/FlashAvatar-code
3. https://github.com/initialneil/SplattingAvatar
4. https://github.com/zhengyuf/PointAvatar
5. https://github.com/initialneil/SplattingAvatar
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Fig. 6. The visual comparison results for different 4D avatars, including INSTA, FlashAvatar, SplattingAvatar, PointAvatar, FLARE and Ours.

Fig. 7. The relighting comparison between PointAvatar [31], FLARE [18]
and our approach, by giving different environmental lights.

One main reason that our approach outperforms pre-
vious 4D avatars quantitatively is the benefit from our
compact 4D Gaussian reconstruction. Compared with pre-
vious Gaussian-based 4D avatars, our compact 4D Gaus-
sian reconstruction provides more accurate geometry and
appearance disentanglement for the 4D Gaussian learning,
thus leading to more accurate results than those previous
4D avatars.

Qualitative Comparison. We also make qualitative com-
parison between those comparing approaches. Fig. 6 depicts
the qualitative comparison between our approach and the
other five comparing approaches. We can observe that the

results of FLARE are limited mainly due to the limited
expressive capability for complicated 4D avatar’s geometry
and deformation, showing relatively low visual quality with
blur artifacts in teeth and mouth rendering. PointAvatar
tends to exhibit point cracks during deformations and is
not fine enough when the points number is insufficient. The
results of INSTA tend to to be smooth, but doesn’t faithfully
reproduce enough details on some regions. In contrast, our
approach can achieve better image rendering quality. Com-
pared with other two 4D Gaussian avatars (FlashAvatar and
SplattingAvatar), our approach can achieve the finest tooth
details and the most faithful lips in the rendered images.
From the zoom-in images, we can also see that our approach
can produce more detailed surface textures, such as the
nose in first row. Furthermore, benefit from our compact
4D Gaussian reconstruction, our approach exhibits minimal
surface artifacts when representing complex features like
beards (see the first row comparison results).

Relighting Comparison with PointAvatar and FLARE.
To our best knowledge, PointAvatar [31] and FLARE [18]
are two monocular-based relightable 4D avatars, which
are most relevant to ours. Both methods predict normals
and BRDFs. However, PointAvatar only predicts the diffuse
BRDF(albedo), restricting the method to use diffuse shading
models like the Lambertian model for relighting, while
FLARE estimates both the diffuse (albedo) and specular
(roughness and specular intensity) components, leading to
natural relighting renderings with specular highlights. To
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demonstrate the effectiveness on relighting applications, we
conduct comparing experiments qualitatively with PointA-
vatar and FLARE using different environmental lighting.
As shown in Fig. 7, our approach predicts more faithful
albedo and achieves significantly better relighting results
than PointAvatar and FLARE.

The alpha blending mechanism and flexible represen-
tation of 3D Gaussian Splatting plays important role in
achieving natural relighting results, which is validated by
the success of 3D Gaussian Splatting. But more importantly,
our compact 4D Gaussian reconstruction and effective ma-
terial and lighting decoupling mechanism serve as the main
factor for the high quality and natural relighting compared
to FLARE and PointAvatar. Please refer to our supplemen-
tary materials for more visual comparison relighting results
between different approaches.

4D Gaussian Reconstruction Comparison. Different
from previous 4D Gaussian avatars, like FlashAvatar and
SplattingAvatar, our RGAvatar introduces effective geome-
try regularization from an extra SDF field, leading to more
compact 4D Gaussian reconstruction. To demonstrate this
point, we compare our approach with FlashAvatar and
SplattingAvatar in terms of the 4D Gaussians’ geometry
reconstruction. Fig. 8 shows several 4D Gaussian geometry
comparison by visualizing the deformed centroid positions
µ̄ (point clouds) in varying poses, expressions and views.
Since FlashAvatar and SplattingAvatar only model the head
and neck regions, we present the comparison results for
these areas. We can see that our approach can achieve
more accurate 4D Gaussian geometry, with much better
compactness coherent to the underlying surface.

To better illustrate our jointly optimized SDF, we ex-
tracted the on-surface meshes from the learned SDF and
compared them with FLARE’s canonical meshes qualita-
tively. Several comparison results are presented in Fig. 9.
We can see that both methods can reconstruct reasonable
head avatar geometry. However, the meshes reconstructed
by FLARE exhibits some aliasing artifacts and holes. In
contrast, the surface reconstructed by our SDF is more
continuous and smoother with fewer artifacts, which can
bring more faithful prior to guide the 4D Gaussian learning.

4.5 Ablation Study

SDF Field constraint. In order to verify the impact of
the SDF field on the compact 4D Gaussian reconstruction,
we implemented an additional version of our system that
removes the SDF field (termed as ’w/o sdf’) and exper-
imentally compared with our full system (termed as ’w
sdf’), by evaluating the image rendering accuracy on the
test set of our collected dataset. Table 2 shows the quan-
titative comparison between such two systems. We can
see that without using the Constraints from SDF field, the
accuracy metrics including PSNR, SSIM, LPIPS, MSE and
L1 consistently decrease compared with our full system.
This shows that the extra SDF field takes effect for better
4D Gaussian reconstruction, thus achieving better image
rendering results. Fig. 10 also shows a visual comparison
results between such two systems. We can see that when
using the SDF field constraint, our full system can achieve
better reconstruction results with more accurate details,

Fig. 8. The 4D Gaussian geometry reconstruction comparison between
FlashAvatar [35], SplattingAvatar [37] and our approach. All these meth-
ods initialize the centroid position µ̄ using standard FLAME template
mesh. However, our approach achieves more accurate geometry by
incorporating SDF field constraint in conjunction with our tailored training
strategy.

Fig. 9. Some visual comparison results of the surface extracted by our
learned SDF (top row) and FLARE [18] (bottom row).

especially realizing compact surface reconstruction and ex-
hibits significantly reduced surface artifacts benefit from our
geometry Regularization and normal regularization. Be-
sides, Fig. 11 demonstrates some relighting results between
’w sdf’ and ’w/o sdf’, we can see that without using the
strong constraints of SDF for the 4D Gaussians reconstruc-
tion, the geometry, material and incident lighting couldn’t
be accurately decomposed by ’w/o sdf’, which leads to
unsatisfactory relighting results. But our full system can
obtain more accurate materials estimation for high quality
relighting.

Geometry-aware Light Visibility Prediction. One im-
portant point for accurate neural material and lighting de-
composition is the geometry-aware light visibility predic-
tion as described in Sec. 3.3. To evaluate the effectiveness
of the designed geometry-aware light visibility prediction,
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Fig. 10. The visual comparison results by two system variants with
(left) or without (right) the SDF field constraints for the 4D Gaussian
reconstruction respectively.

TABLE 2
Quantitative comparison between two variant systems with (’w sdf’) or

without (’w/o sdf’) SDF field constraints.

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ L1↓
w/o sdf 26.9784 0.9175 0.0478 0.0481 0.01282
w sdf 27.9482 0.9246 0.0411 0.0428 0.0114

Fig. 11. The visual comparison results by two system variants with
or without the SDF field constraints for the 4D Gaussian relighting
respectively.

Fig. 12. Visual comparison for predicted albedo rendering with (bottom
middle) or without (top middle) geometry-aware light visibility prediction.
The right column shows the decoupled specular shading(related to
roughness and fresnel reflectivity).The comparison between the first and
second row indicates that with the geometry-aware light visibility predic-
tion, the system can disentangle more accurate albedo and specular
component from original images.

Fig. 13. The visual comparison for performing relighting with and with-
out visibility V (ωi) in Eq. (5). The right column shows ambient occlu-
sion(averaged visibility) of 2 poses.

we implemented a variant of our full system (termed as
’w/o visibility’) by removing the light visibility prediction
module, and compare with our full system (termed as ’w
visibility’) on the evaluation. As shown in Fig. 12, without
using the geometry-aware light visibility the albedo predic-
tion will retain shadow and highlight information, while
our full system can predicts more accurate intrinsic albedo
and disentangles faithful specular shading component with
more highlights from the original image.

Besides, Fig. 13 shows a visual comparison result for
relighting with or without visibility. We can see that the
relighting results using visibility handles reasonable self-
occlusion and have better local shadow effects.

Neural Material and Lighting Decomposition. For the
reflectance modeling, previous approaches like FLARE [18]
and RGCA [38] proposed to use an separated MLP to predict
the appearance, while we model the reflectance according
to the Physically Based Rendering process, and learn to
accurately decompose the material and incident lighting.
To show the difference between such two reflectance mod-
eling, we conduct experimental comparison. Specifically,
we also implement a variant system of our approach by
using the similar reflectance modeling like FLARE [18] and
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Fig. 14. Visual comparison results of albedo, roughness and PBR image
reconstruction from two reflectance modeling strategies, including the
previous strategy like FLARE [18] (top row) and ours (bottom row)
respectively.

RGCA [38], termed as ’MLP reflectance’, and compare with
our full system. As shown in Fig. 14, we can see that our
approach can achieve better albedo, roughness and PBR
rendering than the previous strategy, with more realistic
appearance reconstruction from the input image.

In Fig. 15, we show the evolution of our learned envi-
ronment map during training process. As we can see from
the estimation of both irradiance and albedo respectively,
our approach can effectively disentangle lighting color from
skin tone, gradually decoupling the plausible environmental
lighting and the albedo.

Fig. 15. The visualization of the learned environment map (top row)
during the training process of our approach. The corresponding irradi-
ance(middle row) and albedo map (bottom row) are also demonstrated.

SDF Constraint V.S. Flame Mesh. To provide a more
comprehensive comparison, we conducted an ablation ex-
periment comparing the performance of our method when
bound to a jointly optimized FLAME mesh versus our
SDF constraint. As shown in Fig. 16, it is evident that the
geometry surface reconstructed by optimized SDF is more
continuous and smoother, approximating the geometry of
a real person. Similarly, the normals of the Gaussian avatar
anchored to SDF exhibits the same characteristics. In con-
trast, the bounded FLAME mesh is constrained by the mesh
resolution with accuracy limited and prone to artifacts.
Finally, our approach can achieve better relighting results.
Please refer to the Appendix for more details.

4.6 Time Efficiency Analysis
we carefully made a time efficiency analysis on our ap-
proach by comparing with previous approaches such as
FLARE and PointAvatar. Table 3 shows the per-frame ren-
dering time during the relighting for different comparing
approaches. As we can see from the table, our approach can

Fig. 16. Visual comparison results between two geometry constraint
strategies, including the SDF regulation(ours) and bound Gaussians to
a jointly optimized FLAME mesh respectively.

TABLE 3
Rendering efficiency comparision with other relighting methods. The

rendering time here refers to the average total running time required to
generate each relighted image. Ours (28000) means that the
Gaussians’ number is set as 28000 for the time evaluation.

Method rendering time per image↓ FPS↑
PointAvatar 0.3968s 2.52
FlARE 0.1849s 5.41
Ours(28000) 0.0622s 16.06

achieve 16FPS rendering speed on average, while FLARE is
5.4 FPS and PointAvatar is 2.5 FPS (evaluated on the same
RTX 3090 GPU device), which means that our approach is
significantly faster than the two previous approaches.

More specifically, we split our rendering process into
the deformation stage (including gaussians deformation and
visibility prediction) and the subsequent PBR stage (in-
cluding integrating rendering equations and rasterization),
and separately measured their running time. For per-frame
rendering of our approach (with the number of Gaussians
set to 28,000), the deformation stage takes an average of
35ms, with motion deformation and normal deformation
(related to deep geometry network Fg and network Fm)
accounting for 30ms, and shape deformation and visibility
prediction (related to lightweight Fs and Fv) accounting for
5ms. Obviously, the primary process affecting our deforma-
tion efficiency is the geometry constraint in motion/normal
deformation, which is mainly due to the deep network
structure and gradient computations for normal. The PBR
stage takes an average of 27ms(with the number of integra-
tion samples set to 320).
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5 LIMITATION AND DISCUSSION

RGAvatar consists some limitations. First, our current so-
lution couldn’t accurately model the material and incident
light of human’s eyes and eyeglasses due to their complex
BRDF properties, thus often leading to unsatisfied mate-
rial/lighting estimation for eye regions. Second, We model
the illumination using a global environmental lighting com-
bined with visibility, however, would fail to capture compli-
cated illumination such as small sharp specular highlights
on the face in some cases. This could be further enhanced
by introducing a more complicated but realistic Physically
Based Rendering illumination modeling for better results.

Besides, our approach would sometimes get unwanted
silhouette in the boundary regions of the relighting re-
sults, which is mainly due to the limited precision of the
portrait segmentation in our data preprocessing step. One
straightforward solution is to use more accurate portrait
segmentation such as SAM [66]. Since more accurate portrait
segmentation is not the main contribution in this paper,
we leave it for future work. Flickering artifacts would
sometimes exist for mouth regions, which would mainly
come from the limited precision of the preprocessed fa-
cial expression captured by MICA, bring inconsistencies
for local facial regions especially when performing across-
reenactment for expressions transferring across different
identities. One possible solution would be to use more
accurate 3DMM tracker (more accurate than MICA) which
can also faithfully reconstruct any exaggerated expressions.
But since it is a common challenge for most 4D avatar
reconstruction approaches including ours, we also leave this
as an interesting future work.

Ethic. The goal of RGAvatar is to enable a high fidelity,
subject-specific relightable 4D avatar creation, which can
be used to generate virtual portraits synthesis given novel
poses/expressions. However, this would provide ways for
new malicious content by training a subject from their
monocular video on the internet and generating new con-
tent without their consent. Although the quality of RGA-
vatar has identifiable artifacts by current AI approaches
or tool, the rapid progression of the field suggests these
cues may diminish over time. Addressing this remains an
important technical and legal challenge.

6 CONCLUSIONS

In this paper, we propose a new relightable 4D Gaussian
avatar from monocular videos, by introducing a new re-
lightable 4D Gaussian representation, and a joint learning
mechanism for accurate R-4DGS learning. Our RGAvatar
supports better relighting with significantly improved ren-
dering quality and efficient rendering speed, which to our
best knowledge becomes a new state-of-the-art relightable
4D avatar approach. We think the way we learn a compact
4D Gaussian reconstruction, while introducing geometry-
aware light visibility prediction for accurate material and
incident lighting decomposition, can bring fresh ideas for
the 4D avatar creation community, especially for a high
fidelity relightable 4D avatar while performing relightable
rendering in a quite efficient manner.

Fig. 17. Limitations. Our method is unable to handle some complicated
lighting conditions, thereby sometimes failing to remove subtle specular
highlights on the face (first row), leading to the decrease in accuracy
of estimated albedo. Additionally, our approach does not model the
complex material properties in eye regions, including the eyeball (first
row) and eyeglasses (second row), which results in unsatisfied mate-
rial/lighting estimation and relighting results for these regions.
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M. Stamminger, M. Nießner, and C. Theobalt, “State of the art on
monocular 3d face reconstruction, tracking, and applications,” in
Computer Graphics Forum, vol. 37, no. 2, 2018, pp. 523–550.

[3] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural
radiance fields for monocular 4d facial avatar reconstruction,” in
IEEE CVPR, 2021, pp. 8649–8658.

[4] P.-W. Grassal, M. Prinzler, T. Leistner, C. Rother, M. Nießner, and
J. Thies, “Neural head avatars from monocular rgb videos,” in
IEEE CVPR, 2022, pp. 18 653–18 664.

[5] Y. Hong, B. Peng, H. Xiao, L. Liu, and J. Zhang, “Headnerf: A real-
time nerf-based parametric head model,” in IEEE CVPR, 2022, pp.
20 374–20 384.

[6] Y. Zheng, V. F. Abrevaya, M. C. Bühler, X. Chen, M. J. Black, and
O. Hilliges, “Im avatar: Implicit morphable head avatars from
videos,” in IEEE CVPR, 2022, pp. 13 545–13 555.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” Communications of the ACM,
vol. 65, no. 1, pp. 99–106, 2021.

[8] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
nerf: Neural radiance fields for dynamic scenes,” in IEEE CVPR,
2021, pp. 10 318–10 327.

[9] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M.
Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance
fields,” in IEEE CVPR, 2021, pp. 5865–5874.

[10] X. Gao, C. Zhong, J. Xiang, Y. Hong, Y. Guo, and J. Zhang,
“Reconstructing personalized semantic facial nerf models from
monocular video,” ACM TOG, vol. 41, no. 6, pp. 1–12, 2022.

[11] Y. Xu, L. Wang, X. Zhao, H. Zhang, and Y. Liu, “Avatarmav: Fast
3d head avatar reconstruction using motion-aware neural voxels,”
in ACM SIGGRAPH 2023 Conference Proceedings, 2023.

[12] X. Zhao, L. Wang, J. Sun, H. Zhang, J. Suo, and Y. Liu, “Havatar:
High-fidelity head avatar via facial model conditioned neural
radiance field,” ACM TOG, 2023.



VOL. XX, NO. X, 2024 14

[13] L. Wang, X. Zhao, J. Sun, Y. Zhang, H. Zhang, T. Yu, and Y. Liu,
“Styleavatar: Real-time photo-realistic portrait avatar from a single
video,” in ACM SIGGRAPH 2023 Conference Proceedings, 2023.

[14] Z. Zheng, X. Zhao, H. Zhang, B. Liu, and Y. Liu, “Avatarrex: Real-
time expressive full-body avatars,” ACM TOG, vol. 42, no. 4, 2023.

[15] X. Deng, Z. Zheng, Y. Zhang, J. Sun, C. Xu, X. Yang, L. Wang,
and Y. Liu, “Ram-avatar: Real-time photo-realistic avatar from
monocular videos with full-body control,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2024.

[16] Y. Xu, H. Zhang, L. Wang, X. Zhao, H. Han, Q. Guojun, and Y. Liu,
“Latentavatar: Learning latent expression code for expressive neu-
ral head avatar,” in ACM SIGGRAPH 2023 Conference Proceedings,
2023.

[17] W. Zielonka, T. Bolkart, and J. Thies, “Instant volumetric head
avatars,” in IEEE CVPR, 2023, pp. 4574–4584.

[18] S. Bharadwaj, Y. Zheng, O. Hilliges, M. J. Black, and V. Fernandez-
Abrevaya, “Flare: Fast learning of animatable and relightable
mesh avatars,” ACM Transactions on Graphics, vol. 42, no. 6, 2023.

[19] D. Gao, G. Chen, Y. Dong, P. Peers, K. Xu, and X. Tong, “Deferred
neural lighting: free-viewpoint relighting from unstructured pho-
tographs,” ACM TOG, vol. 39, no. 6, pp. 1–15, 2020.

[20] X. Zhang, S. Fanello, Y.-T. Tsai, T. Sun, T. Xue, R. Pandey, S. Orts-
Escolano, P. Davidson, C. Rhemann, P. Debevec et al., “Neural light
transport for relighting and view synthesis,” ACM TOG, vol. 40,
no. 1, pp. 1–17, 2021.

[21] K. Sarkar, M. C. Bühler, G. Li, D. Wang, D. Vicini, J. Riviere,
Y. Zhang, S. Orts-Escolano, P. Gotardo, T. Beeler et al., “Litnerf:
Intrinsic radiance decomposition for high-quality view synthesis
and relighting of faces,” in SIGGRAPH Asia 2023 Conference Papers,
2023, pp. 1–11.

[22] Y. Xu, G. Zoss, P. Chandran, M. Gross, D. Bradley, and P. Go-
tardo, “Renerf: Relightable neural radiance fields with nearfield
lighting,” in IEEE CVPR, 2023, pp. 22 581–22 591.

[23] Z. Xu, K. Sunkavalli, S. Hadap, and R. Ramamoorthi, “Deep
image-based relighting from optimal sparse samples,” ACM TOG,
vol. 37, no. 4, pp. 1–13, 2018.
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