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a b s t r a c t 

We present a method for reshuffle-based 3D interior scene synthesis guided by scene structures. Given 

several 3D scenes, we form each 3D scene as a structure graph associated with a relationship set. Consid- 

ering both the object similarity and relation similarity, we then establish a furniture-object-based match- 

ing between scene pairs via graph matching. Such a matching allows us to merge the structure graphs 

into a unified structure, i.e., Augmented Graph ( AG ). Guided by the AG , we perform scene synthesis by 

reshuffling objects through three simple operations, i.e., replacing , growing and transfer . A synthesis com- 

patibility measure considering the environment of the furniture objects is also introduced to filter out 

poor-quality results. We show that our method is able to generate high-quality scene variations and out- 

performs the state of the art. 

© 2016 Published by Elsevier Inc. 
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1. Introduction 

Recently, 3D interior scenes have received more and more at-

tention due to the huge demand in the industries such as com-

puter games and virtual reality. However, designing and creating

3D digital scenes are still time-consuming even for artists. Fisher

et al. [1] provided an efficient solution for 3D scene synthesis

from examples based on moderate-to-large scene datasets. How-

ever, such a learning based algorithm is still complicated due to

the complexity for data collection. Besides, the learned probabil-

ity model might not always achieve user-desired constraints, such

as rigid grid layouts or exact alignment relationships. Such issues

might be solved by utilizing the original examples rather than

learning from the example dataset. 

It is still a desirable way to synthesize scenes directly from a

small set of 3D scene examples without learning algorithms. Start-

ing from such a point, Xie et al. [2] introduced a non-learning-

based scene synthesis method by grouping the furniture objects

into different types of units and reshuffling the interchangeable

objects from the same units. Although their method could gener-

ate some kind of diverse new scenes, it is still rather limited due

to the limited grouping types. In addition, their local analysis ig-

nored the scene’s layout structure information, which is, however,

a very important guidance cue for scene generation. We observed

that there is a latent rule in the layout distribution of the scene

furniture objects locally and globally . Locally, furniture objects
∗ Corresponding author. 
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ften ‘contact’ with each other, following a certain kind of relation.

or example, a chair often closely faces a table , and a bedside cab-

net is always at one side of a bed with one side aligned. Globally,

hese furniture objects with the local relationships form a layout

tructure. Based on the above observations, we carefully analyze

he layout structures of the exemplar scenes and synthesize new

cenes utilizing the relations between the layout structures, which

ave not been explored by Xie et al. [2] . 

Given several 3D interior scenes as examples, our goal is to

ynthesize new scenes with variations using a geometric approach

ather than a learning-based strategy. Although furniture objects

ary a lot in geometry, they latently relate with each other ac-

ording to the relations among objects. In this paper, we first de-

ne five kinds of relations between furniture objects ( Fig. 4 (a-e)),

.e., support relation , vertical contact relation , facing relation , aligned

elation and close relation , which widely exist in the 3D interior

cenes. Then we represent each 3D scene as a structure graph. Our

tructure graph is different from the previous ones [2] , since we

ssociate a relationship set rather than a single relationship with

ach edge in the structure graph. We establish a matching between

he layout subgraphs ( Fig. 4 (f)) via graph matching, which provides

 cue to relate two structure graphs. Based on the matching, we

erge the scene structures into an Augmented Graph ( AG ), which

ncodes all the layout structure information among the examples.

e then utilize the AG to guide scene synthesis by using several

imple and efficient operations, i.e., replacing , growing and trans-

er . The growing operation is especially efficient for adding a new

bject. These operations provide a flexible and user-friendly way

o synthesize diverse scenes. To evaluate scene quality and avoid

http://dx.doi.org/10.1016/j.gmod.2016.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2016.03.004&domain=pdf
mailto:shishenghuang0@gmail.com
http://dx.doi.org/10.1016/j.gmod.2016.03.004
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ow-quality scenes during the synthesis, we introduce a synthesis

ompatibility value to measure each synthesis operation and the

uality of a resulting scene. 

Our main contribution lies in the following three points: 

(1) We represent a 3D interior scene as a structure graph associ-

ated with a relationship set, and introduce a furniture object

matching method between scene pairs via graph matching.

Our scene matching is general and efficient, which can be

used for other applications besides scene synthesis. 

(2) We introduce a unified structure, Augmented Graph , to en-

code all the layout information from examples, augmented

from the matched structure graphs. Guided by the AG , we

provide three simple reshuffle-based synthesis operations,

i.e., replacing , growing and transfer , to generate diverse new

scenes. 

(3) We also introduce a synthesis compatibility metric to mea-

sure scene quality during the synthesis, making it efficient

to filter out poor quality synthesis results. 

. Related work 

It has still been a challenging problem for rapidly designing

nd creating 3D contents, such as shapes and 3D scenes. In recent

ears, continuous progresses have been made for shape processing

see [3] for more details). Here we only focus on example-based

anipulation and analysis for shapes and 3D scenes. 

art-based shape synthesis. Shape synthesis by reusing parts is an

fficient way to generate new shapes [4] . Jain et al. [5] provided

 method to synthesize man-made objects by blending a small set

f segmented shapes via recombining their object parts. Functional

tructure plays an important role in shape understanding. Re-

ently, a few part-based substructures have been introduced, such

s sFARR-s structure [6] , Support Substructure [7] and Replaceable

ubstructure [8] . Based on such part-based substructures, shape

ynthesis with plausible results can be efficiently achieved with

unctional computability maintained. Evangelos et al. [9] learned

 probability model from a moderate-to-large shapeset to guide

hape synthesis. The data-driven part-based algorithms also show

s the efficiency in 3D modeling [10,11] . Xu et al. [12] introduced

n approach to generate new shapes via set evolution. Recently, Al-

ashim et al. [13] provided a shape blending method to synthesize

ew shapes by topology varying. Our reshuffle-based algorithm is

nspired by these part-based shape synthesis methods, which can

e extended to scene synthesis. 

cene analysis. In general, interior scene understanding is a chal-

enging problem due to the variation in object geometry and func-

ional arrangement. The relationship between objects can be used

s a useful cue to guide scene analysis, especially for scene match-

ng and retrieval. Object retrieval can be enhanced using the con-

ext information [14] . Fisher et al. [15] introduced an efficient

ethod to compare scene objects using Graph Kernel defined on

 relation graph. Learning based algorithms have also been intro-

uced to synthesize scenes. For example, Fisher et al. [1] proposed

 learning based method to synthesize 3D scenes from a given

cene set. Su et al. [16] proposed a probabilistic scene model using

bject frames. In contrast, our method is not learning-based and

irectly synthesizes scenes from examples. Xu et al. [17] provided

 method to organize heterogeneous scene collection using focal

oints. Recently, Liu et al. [18] provided a method to infer consis-

ent grouping information via parsing with a probabilistic grammar

earned from examples. Existing works has paid more attention on

he similarity between pairs of either single objects or scenes and

ew works have studied the matching of furniture objects in the

ayout structures. 
cene reconstruction. Our work is also related to scene reconstruc-

ion. Recently there has been a significant progress on scene re-

onstruction from LiDAR data [19,20] and RGB-D data [21] . Xu

t al. [22] presented a novel approach to reconstruct 3D scenes

rom user-drawn rough sketches. Scenes reconstructed from sen-

or data always lack semantic labels or tags, which are time-

onsuming to manually label or tag. Our method thus aims to han-

le scenes without any category labels. 

Our work is closely related to [1] , both aiming at synthesizing

cenes by example. However, our algorithm is non-learning based,

nd works well for a small number of examples, reducing the com-

lexity on constructing a large dataset of scenes. Our work also

ears close resemblance to [2] : both of them are reshuffle-based

cene synthesis. However, our approach is more flexible on scene

tructures since structures and relations in [2] are very limited. 

. Overview 

Inspired by the part-based methods for shape synthesis and

cene analysis (see the discussions in the previous section), we

rovide a structure-guided method for synthesizing 3D interior

cenes from a small set of examples. Our input is a small set of ex-

mplar 3D interior scenes. Each interior scene has been segmented

nto single furniture objects ( Fig. 1 ) and oriented uprightly [23] . As

iscussed previously our approach does not need the furniture ob-

ects to be semantically tagged or labeled. We also assume that the

acing direction of each furniture object is available (see Fig. 2 ). In

eneral, the shape’s orientation detection is not an easy problem

n its own. We use the prior knowledge of each 3D scene to deter-

ine the facing direction of each furniture object (see Section 4 for

ore details). 

As shown in Fig. 1 , our method involves three stages. In the first

tage, we extract all the relations in each scene according to the

ve relations to be formally introduced later. Then we represent

ach scene as a structure graph G = { V, E, A } by associating a rela-

ionship set A e ∈ A with each edge e ∈ E . In the second stage, we

erform scene matching between scene pairs based on the layout

ubgraphs G L ( Fig. 4 (e)). Following the scene matching scheme,

e introduce a greedy method to augment all the scene graphs

nto a unified Augmented Graph ( AG ). In the last stage, we perform

cene synthesis according to the three scene synthesis operations

efined on the Augmented Graph ( AG ). During the synthesis, we use

he synthesis compatibility measurement to filter out poor synthe-

is operations. 

Next we first introduce how we extract the relations and per-

orm scene matching via graph matching in Section 4 . In Section 5 ,

e will discuss how to augment a set of structure graphs into a

nal AG and to perform scene synthesis guided by AG . We will

resent lots of diverse results synthesized by our algorithm in

ection 6 and conclude the paper in Section 7 . 

. Scene matching 

In this section we first show how we determine the facing di-

ection of each furniture object. First, we compute a symmetry

lane (if any) ( Fig. 3 ) for each furniture object. The facing direc-

ion is always parallel to the symmetry plane. Users can specify the

acing direction manually if none or multiple symmetry planes ex-

st. In general, furniture objects which are located in the boundary

egion of a 3D scene often have facing directions pointing to the

cene’s center. This motivated us to assign the facing directions of

uch boundary objects as the directions which are parallel to their

ymmetry planes and point to the scene’s center. Then for the rest

f the furniture objects, their facing directions are assigned as the

irections parallel with the symmetry planes and pointing to the

earest objects. 
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Fig. 1. (a) Given several 3D interior scenes, (b) we represent each scene as a structure graph affiliated with a relationship set and perform scene matching via graph matching 

on the layout subgraphs (the subgraphs colored in blue). (c) Based on the scene matching, we augment the structure graphs with an Augmented Graph to guide the scene 

synthesis using three synthesis operations, leading to plausible new scenes. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 2. The facing direction(s) of furniture objects. 

Fig. 3. An illustration for symmetry plane detection. 
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4.1. Graph building 

We represent a given 3D interior scene as a structure graph G =
{ V, E, A } associated with a relationship set, with v ∈ V representing

a furniture object in the scene, and each edge e ij ∈ E associated

with a relationship set A e i j 
∈ A if there exists any relation between

nodes v i and v j . 
Previous methods (e.g., Fisher et al. [15] , Merrell et al. [24] ,

Yu et al. [25] ) often formulate a scene as a relation graph, with

each edge assigned a specific relation. However, we observed that

there may exist multiple kinds of relations for one edge. For exam-

ple, a TV is supported by a cabinet with one side aligned. In this
ondition, the edge between TV and cabinet has at least two rela-

ions, namely, support relation and aligned relation. This kind of

ondition widely exists in 3D interior scenes. So instead of formu-

ating a scene as an ordinary relation graph, we formulate it as a

tructure graph associated with a relationship set. In other words,

ach edge e ij ∈ E may have several associated relations, thus form-

ng a relationship set A e i j 
. 

In the previous works various relations have been explored, e.g.,

he alignment relation, emphasis relation, pairwise relation, hier-

rchical relation [2] . However, since our input is only a small set

f scenes, it is hard to apply so many various relations. Instead,

e focus on only five simple relations ( Fig. 4 ) to characterize the
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Fig. 4. The relation graph (f) defined based on five types of relation. (a) Support relation. (b) Facing relation. (c) Vertical contact relation. (d) Aligned relation. (e) Close 

relation. (f) The layout subgraph after removing the supported furniture objects. 
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lacing requirements of these furniture objects, which are still de-

criptive and efficient. Specifically we define these fine kinds of re-

ation as follows: 

upport relation. For a pair of object nodes (v i , v j ) , if node v i sup-

orts node v j ( Fig. 4 (a)), we add an edge between v i and v j , and

dd a Support Relation ( S ) into edge e ij ’s relationship set A e i j 
, i.e.,

 e i j 
= A e i j 

∪ { S} . 

acing relation. If node v i faces node v j ( Fig. 4 (b)) according to the

acing direction, we add a Facing Relation ( F ) to the relationship

et A e i j 
, i.e., A e i j 

= A e i j 
∪ { F } . For the Facing Relation, we record the

istance between object pair (v i , v j ) and angle αf between the two

odes for edge similarity measurement later. 

ertical contact relation. If node v i vertically contacts node v j 
 Fig. 4 (c)), we add a Vertical Contact Relation ( V ) into the relation-

hip set A e i j 
, i.e., A e i j 

= A e i j 
∪ { V } . In practice, the Vertical Contact

elation is extracted if node v i is in contact with node v j and the

ontact area forms a vertical plane surface. Denoting n ij as the nor-

al of contact plane surface, we record the angle αi between n ij 
nd node v i ’s facing direction, and αj between n ij and node v j ’s
acing direction. Then we use the average angle αv = (αi + α j ) / 2 as

he contact angle for the vertical contact relation. Using the con-

act angle αv , we aim at describing the left contact or right contact

or a pair of involved furniture objects. 

ligned relation. If a certain side of the bounding box v i is aligned

ith the corresponding side of v j ’s bounding box ( Fig. 4 (d)), we

dd an Aligned Relation ( A ) into the relationship set A e i j 
, i.e. A e i j 

=
 e i j 

∪ { A } . In practice, we require the object pair (v i , v j ) to be close

nough but not necessarily in contact. 

lose relation. If the pair of objects (v i , v j ) are not in contact with

ach other but are close to each other ( Fig. 4 (e)), we also add a

lose Relation ( C ) into the relationship set A e i j 
, i.e. A e i j 

= A e i j 
∪ { C} .
e record the distance between the pair of objects (v i , v j ) for fur-

her similarity measurement. 

Note that the furniture objects that are supported by any other

urniture objects do not influence the scene layout in the 2D layout

lane. They can be flexible kinds of object categories with varying

eometry. It is the remaining furniture objects (other than the sup-

orted furniture objects) that decide the scene layout. Thus we re-

ove the supported objects from the structure graph G , resulting

 layout subgraph G L . Next we will perform scene matching on the

ayout subgraphs to match two structure graphs mainly consider-

ng their layouts. 

.2. Scene matching on layout subgraph G L 

Let G L = { V, E, A } and G 

′ 
L = { V ′ , E ′ , A 

′ } be two layout subgraphs

f two structure graphs G and G 

′ , respectively. Our goal is to find

n optimized matching between V and V 

′ , f : V → V 

′ , that best

atches the furniture objects and preserves the relations between

dges e ij ∈ E and e ′ 
i j 

∈ E ′ . Mathematically, we would like to find a

atching f that maximizes the following energy function: 

( f ) = 

∑ 

v i ∈ V 
φi ( f (v i )) + λ

∑ 

e i j ∈ E 
φ(e i j , f (e i j )) , (1) 

here v ′ 
i ′ = f (v i ) ∈ V ′ is the correspondence node and e i ′ j ′ =

f (e i j ) ∈ E ′ is the correspondence edge in G 

′ 
L 

under the matching

 , and λ is a parameter to balance the object matching energy

i ( f (v i )) and the edge matching energy φ( e ij , f ( e ij )). 

bject matching energy φi ( f (v i )) . The optimized matching needs

o match similar objects as much as possible, since it is very likely

hat similar objects serve the same functional role in the scenes.

owever, since the geometry of the objects can vary a lot, sim-

larity based on detailed shape descriptor like SDF [26] might

e too restrictive. Instead, we define an object matching en-

rgy at the level of the object bounding box. More specifically,

et BOB (v i ) = { θ1 , θ2 , θ3 } and BOB (v ′ 
i ′ ) = { θ ′ 

1 
, θ ′ 

2 
, θ ′ 

3 
} denote the
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bounding box scale in the three main axes for nodes v i are v ′ 
i ′ ,

with f (v i ) = v ′ 
i ′ . We have 

φi ( f (v i )) = exp { (1 . 0 −
3 ∏ 

i 

g(θi , θ
′ 
i )) /σg } , (2)

where g(x, y ) = 1 + | x − y | / | x + y | and σ g is a parameter which will

be discussed in Section 6 . 

Edge matching energy φ( e ij , f ( e ij )). We define the edge matching

energy based on the relations. For the Aligned Relation ( A ), we use

the number of such relations that both relationship sets share to

serve for the similarity of the edge pair (e i j , e 
′ 
i ′ j ′ ) . More specifically,

we define 

d A (e i j , e 
′ 
i ′ j ′ ) = | A e i j 

∩ A e ′ 
i ′ j ′ 

∩ { A }| , (3)

as the Aligned Relation similarity. 

For the Vertical Contact Relation ( V ), we use the contact angle

αv to measure the similarity, i.e., 

d V (e i j , e 
′ 
i ′ j ′ ) = exp {−| αv i j 

− αv ′ 
i ′ j ′ 

| /π} I{ A e i j 
∩ A e ′ 

i ′ j ′ 
∩ { V }} , (4)

where I (.) is the indicator function with I(∅ ) = 0 and I(a � = ∅ ) = 1 .

For the Facing Relation ( F ), we use the facing relation angle αf 

to measure the similarity: 

d F (e i j , e 
′ 
i ′ j ′ ) = exp {−| α f i j 

− α f ′ 
i ′ j ′ 

| /π} I{ A e i j 
∩ A e ′ 

i ′ j ′ 
∩ { V }} . (5)

For the Close Relation ( C ), we use the edge distance d e i j 
and

define 

d C (e i j , e 
′ 
i ′ j ′ ) = exp {−| d e i j 

− d e ′ 
i ′ j ′ 

| /σc } I{ A e i j 
∩ A e ′ 

i ′ j ′ 
∩ { C}} , (6)

as the Close Relation similarity. 

Then we sum them all to measure the Edge Matching Energy, 

φ(e i j , f (e i j )) = d V (e i j , e 
′ 
i ′ j ′ ) + d A (e i j , e 

′ 
i ′ j ′ ) 

+ d F (e i j , e 
′ 
i ′ j ′ ) + d C (e i j , e 

′ 
i ′ j ′ ) , (7)

where e ′ 
i ′ j ′ = f (e i j ) . 

We can use x ik ∈ {0, 1} to denote whether v i ∈ V matches

v ′ 
k 

∈ V ′ : if f (v i ) = v ′ 
k 

then x ik = 1 , otherwise x ik = 0 . In this way the

energy function E ( f ) can be reformulated as 

E( f ) = 

∑ 

i 

∑ 

k 

φi (v ′ k ) x ik + λ
∑ 

e i j ∈ E 

∑ 

e ′ 
kl 

∈ E ′ 
φ(e i j , e 

′ 
kl ) x ik x jl 

= X W X, (8)

with X = { x 11 , x 21 , ..., x m 1 , ..., x m −1 n , x mn } , where m = | V | , n = | V ′ | ,
and W is the matching matrix. 

Graph matching. We would like to find an optimal matching

f ∗ to maximize the matching energy function such that f ∗ =
argmax f E( f ) . This is the so-called Graph Matching problem.

Matching two graphs is a fundamental problem, and has been

widely studied [27–30] . We use the SMAC algorithm [29] to solve

this optimization. The SMAC algorithm finds the optimized match-

ing by using an SVD decomposition of the matrix W and forcing

the eigenvalues into binary X to obtain the matching result. In our

case, we choose the one-to-one attributed matching, meaning that

each node can have only one matching node, if any. In practice,

we use the maximum eigenvalue as the matching confidence for

each matching. If the matching confidence exceeds a threshold γ
( γ = 0 . 8 in all our experiments), we use the matching result; oth-

erwise, we withdraw it. Fig. 5 shows a toy example illustrating

how we perform the scene matching via graph matching. 
. Scene synthesis guided by augmented graph 

Once furniture objects are matched using the scene match-

ng method described in the previous section, we can synthesize

ew scenes by simply reshuffling the matched furniture objects.

owever, it is quite often that two layout graphs have different

umbers of objects. Therefore, there may exist some object nodes

ithout any correspondence. Thus simply reshuffling between cor-

esponding furniture objects cannot always lead to diverse new

cenes. Inspired by the work in [13] for blending shapes, we sug-

est to ‘merge’ the structure graphs into a so-called Augmented

raph ( AG ) based on the matched layout graphs. With the Aug-

ented Graph , we define three reshuffle-based synthesis opera-

ions, i.e., replacing , growing and transfer (to be described in more

etail later), to synthesize diverse and plausible new scenes. Note

hat our condition is different from [13] : their matching between

omponents is not fully automatic while ours is automatic. Besides,

ur matching is a one-to-one matching. In contrast theirs can be

ither one-to-one or one-to-many, since one functional part can

e served as multiple components. We thus do not need to define

plit node for node augmentation or the related operations for edge

ugmentation. 

ugment two matched layout graphs. We augment two matched

ayout graphs G L = { V, E, A } and G 

′ 
L = { V ′ , E ′ , A 

′ } into an Augmented

raph ˆ G L = { ̂  V , ̂  E , ˆ A } , with node augmentation, edge augmentation

nd attribution augmentation, as illustrated in Fig. 6 . 

Node augmentation. For a node v ∈ G L , if v has the correspond-

ng node v ′ ∈ G 

′ 
L 
, then we merge node pair (v , v ′ ) into a node ˆ v in

ˆ 
 L , i.e., ˆ V = 

ˆ V ∪ ̂

 v ; otherwise, if v does not have correspondence in

 

′ 
L 
, we just add v into ˆ G L , i.e., ˆ V = 

ˆ V ∪ v . We do the same for nodes

 

′ ∈ G 

′ 
L to obtain the augmented nodes for ˆ G L . 

Edge augmentation. For a node pair ( ̂ v i , ̂  v j ) ∈ 

ˆ G L , if there exist

dges in either graph G L or G 

′ 
L , we add an edge to this node pair,

.e., ˆ E = 

ˆ E ∪ ̂  e i j . 

Attribution augmentation. For an edge ˆ e i j ∈ 

ˆ G L , we merge the

elationship sets from the corresponding edges e ij ∈ G L and e ′ 
i ′ j ′ ∈

 

′ 
L 

into an augmented relationship set, i.e., ˆ A ˆ e i j 
= 

ˆ A ˆ e i j 
∪ A e i j 

∪ A 

′ 
e ′ 

i ′ j ′ .

After the two layout graphs are augmented, the supported ob-

ect nodes are then added to the Augmented Graph correspond-

ngly to get the final Augmented Graph ( AG ). 

ugment a set of structure graphs. Since our input is a small set

f 3D scenes, we need to consider the problem of augmenting a

et of scene graphs. This problem has not been explored in [13] ,

ince their work considers only a pair of shapes. For n scene graphs

 G 1 , G 2 , ..., G n } , our goal is to augment them into a single Aug-

ented Graph ( AG ), i.e., { G 1 , G 2 , ..., G n } ⇒ AG . Our strategy is to first

ugment their layout subgraphs one by one greedily and then ob-

ain the final AG by adding the supported nodes respectively. We

efine the matching similarity s ( G i , G j ) for a pair of graphs ( G i ,

 j ) as the number of nodes matched. For the layout subgraphs

 G L 1 
, G L 2 

, ..., G L n } , we first augment graph pair (G L i 
, G L j 

) with the

ighest matching similarity, i.e., (G L i 
, G L j 

) ⇒ 

ˆ G 

1 
L 
. Next a new lay-

ut subgraph G L k 
with the highest matching similarity to ˆ G 

1 
L is

ugmented with 

ˆ G 

1 
L 

to form a further Augmented Graph 

ˆ G 

2 
L 
, i.e.,

( ̂  G 

1 
L 
, G L k 

) ⇒ 

ˆ G 

2 
L 
. When matching ( ̂  G 

1 
L 
, G L k 

) via graph matching, the

bject Matching Energy is calculated as the maximizing node pair

rom the original graphs, i.e., φˆ v l ( v 
′ 
l ′ ∈ G L k 

) = max { φv l ∈ G L i 
( v ′ l ′ ∈

 L k 
) , φv l ∈ G L j 

( v ′ l ′ ∈ G L k 
) } . The Edge Matching Energy is also cal-

ulated as the maximizing edge matching energy from the

riginal edge pairs, i.e., φ( ̂  e i j ∈ 

ˆ G 

1 
L , e 

′ 
kl 

∈ G L k 
) = max { φ(e i ′ j ′ ∈ G L i 

,

 

′ 
kl 

∈ G L k 
) , φ(e i ′ j ′ ∈ G L j 

, e ′ 
kl 

∈ G L k 
) } . The above augmentation steps
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Fig. 5. An illustration of how to perform graph matching between the layouts of two scenes ( Fig. 1 ). Left: the matching results with the corresponding objects linked with 

dashed lines. Right: the similarity matrix W when λ = 0 . 5 with the darker colors meaning the higher similarity. 

Fig. 6. An example showing how we augment two layout subgraphs, with node augmentation, edge augmentation and attribution augmentation. Note that in each layout 

subgraph, the nodes are colored the same as the original furniture objects. The blue node in ˆ G 1 is a newly added node after augmentation. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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re repeated until all the layout subgraphs are augmented to one

raph 

ˆ G 

n −1 
L 

. Please refer to the supplementary materials for the de-

ailed augmentation process of the 4 data sets shown in Fig. 9 . 

In the end the supported object nodes are added to ˆ G 

n −1 
L 

ac-

ording the original structure graphs to get the final Augmented

raph ( AG ). For any structure graph G i , any furniture object node

 ∈ G i has one and only one corresponding furniture object node in

G . The AG encodes all the layout information from the examples,

nd thus can be used to guide scene synthesis. 

.1. AG guided scene synthesis 

After the scenes are augmented to an Augmented Graph , we

nable AG guided scene synthesis by introducing three reshuffle-

ased synthesis operations on AG , i.e., replacing , growing and trans-

er . Suppose we augment a set of scenes { G , G , ..., G n } into one
1 2 
ugmented Graph AG . We design the replacing and growing oper-

tions for nodes belonging to the layout subgraphs of AG , and de-

ign the transfer operation for supported nodes in AG as shown in

ig. 1 (c). 

1. Replacing. Furniture objects that correspond to the same nodes

in the AG can replace with each other. More specifically, if two

furniture objects v ∈ G i , v ′ ∈ G j correspond to the same node

ˆ v ∈ AG, then we can perform the replacing operation between v
and v ′ . For example, to replace v with v ′ , we first rotate v ′ such

that v ′ ’s facing direction aligns with v ’s. If A v has the Aligned

Relation, v ′ is then adjusted to align with the related furniture

objects. 

2. Growing. For a 3D interior scene G i , if G i ’s layout subgraph G L i 
does not have a node corresponding to one node ˆ v ∈ AG . For

example, if ˆ v ∈ AG does not have any correspondence in G L i 
, we
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can consider growing a new node in G L i 
that corresponds to ˆ v ∈

AG to synthesize new scenes from G i . 

If we grow a node ˆ v ∈ AG for G i , we consider a set of neigh-

bors of ˆ v ∈ AG and denote it as N ˆ v . If none of the nodes in N ˆ v
has any correspondence in G i , i.e., N ˆ v ∩ G i = ∅ , then growing

becomes unfeasible, since there is limited layout information to

reconstruct ˆ v in G i . Otherwise, we use the relations of the edge

between N ˆ v ∩ G i and 

ˆ v to reconstruct ˆ v in G i . During reconstruc-

tion, we try to preserve the contact angle αv for the Vertical

Contact relation, αf for the Facing relation, and the related dis-

tance for the Close relation to get the best layout position. If

there exists any Aligned relation, ˆ v is adjusted to align the re-

lated nodes. Lastly, ˆ v may contain several furniture objects from

the original scenes. Once ˆ v ’s position in G i is determined, each

time we can place the original furniture objects to that place,

obtaining several diverse new scenes. 

3. Transfer. The transfer operation is performed for supported

nodes in AG . If several supported furniture nodes are supported

by one node ˆ v ∈ AG, since ˆ v contains several corresponding fur-

niture nodes, the supported furniture nodes can be transferred

to be supported by other furniture nodes (corresponding to ˆ v )
in other scenes. When placing a supported furniture object in

new scenes, the domain supported surface of the supporting

furniture object is detected as done in [1] . The supported fur-

niture object is then placed onto the domain supported surface

with the same place as in the original scene. If the supporting

furniture object does not have such a domain supported surface

(e.g., a sofa ’s top supported surface cannot support a furniture

object) we do not perform the transfer operation. 

We perform scene synthesis starting from each scene one by

one. Each time we select an input scene G i and randomly per-

form the three synthesis operations to generate new scenes. 

Scene synthesis compatibility. During the synthesis, we compute a

synthesis compatibility value for each synthesis operation and the

entire new scene, to measure the compatibility of the synthesis op-

eration and the quality of the newly generated scene. Our synthe-

sis compatibility metric considers the environment of the newly

placed furniture object. 

For the replacing operation, we use the scale changing value

of the bounding box between the newly placed furniture object v
and the original object v ′ . As the object matching energy described

in Section 4 , let BOB (v ) = { θ1 , θ2 , θ3 } , BOB (v ′ ) = { θ ′ 
1 , θ

′ 
2 , θ

′ 
3 } denote

the bounding box scale in the three main axes for v and v ′ . We use

ζr (v ) = exp { (1 . 0 −
3 ∏ 

i 

g(θi , θ
′ 
i )) /σr } , (9)

as the synthesis compatibility metric for the replacing operation. 

For the transfer operation, we consider the furniture objects v
and v ′ that support the to-be-transferred furniture objects, and use

ζt (v ) = exp { (1 . 0 −
3 ∏ 

i 

g(θi , θ
′ 
i )) /σt } , (10)

as the synthesis compatibility metric for the transfer operation. 

For the growing operation, we consider the neighbors of the to-

be-grown furniture object v . Assume v ’s original structure graph is

G i and we grow it in G j (we denote v in G j as v ′ ). v and v ′ ’s respec-

tive neighbors are N v and N 

′ 
v , and f : N v → N 

′ 
v is the matching.

We use 

ζg (v ) = 

∑ 

v̄ ∈N v 
exp {−(d(v , ̄v ) − d(v ′ , f ( ̄v ))) /σg } , (11)
s the synthesis compatibility metric for the growing operation,

here d (.) is the Euclidean distance. If v ′ intersects with some fur-

iture object in G j , we set ζg = 0 . 

For a new scene u that is generated by a serials of operations,

e use 

(u ) = 

∏ 

i 

ζr (v i ) 
∏ 

j 

ζg (v j ) 
∏ 

k 

ζt (v k ) , (12)

s the synthesis compatibility value to evaluate the quality of new

cene u . The K ( u ) ∈ [0, 1] is higher, the quality is better. 

. Results 

ata. We tested our method on example sets of 3D interior scenes

oming from Xu et al. [22] ’s open dataset. That dataset con-

ains varying categories of interior scenes such as the living room,

eeting room etc. Some representative scene synthesis results are

hown in Fig. 9 . The scenes were segmented into meaningful single

urniture objects. We extracted the structure graphs, and matched

hem via graph matching. Please refer to the details of the graph

atching in the supplementary materials. After augmenting them

nto an AG , we synthesized them using the three synthesis oper-

tions, and got dozens of new synthesis scenes with diverse ge-

metry and arrangement variation. For each synthesis operation,

e only used the operations with synthesis compatibility values

bove 0.8. The synthesis was terminated if the new scenes’ syn-

hesis compatibility is below 0.2. 

arameters. Each time for scene synthesis, we suggested an input

cene set containing only 2 ∼ 4 scenes. In all of our experiments,

e set λ = 0 . 5 for graph matching. When calculating the synthesis

ompatibility values, we set σ r , σ t and σ g as the diagonal length

f the scene’s bounding box. 

omparing with Xie’s method. The most related method to our al-

orithm is Xie et al.’s [2] . We compared our algorithm with Xie

t al.’s by evaluating the quality of the synthesized scenes by the

wo approaches. For the four data sets shown in Fig. 9 , we ob-

ained the synthesis results by Xie et al.’s method and sorted them

ccording to the assessment scores in the descending order. Our

esults were also sorted according to the synthesis compatibility

alues in the descending order. Then we selected the top-40 results

rom the two synthesis result sets for each input set, thus obtain-

ng in total 320 synthesis results with half coming from Xie et al.’s

ethod and half coming from ours. Later, we asked 20 participants

o give a score for each synthesis result in the scale from 1 (low

uality) to 5 (high quality). Each synthesis result was randomly

hown to each participant, and each participant gave a score by

eing asked: “Is the new synthesis result’s layout consistent with

he original one?” and “Is the new synthesis result appropriate in

he real world?”. We computed a top- K average score for the i -th

ata set as 

 v g(i, K) 1 = 

1 

K 

∑ 

j 

a 1 i j , A v g(i, K) 2 = 

1 

K 

∑ 

j 

a 2 i j , (13)

here a 1 
i j 

and a 2 
i j 

were the j -th result’s score in the i -th data set

or the Xie et al.’s method and ours, respectively. Thus we obtained

 average top- K score curves as shown in Fig. 7 . From the curves,

ur results’ scores were always higher in all of the 4 data sets than

ie’s method [2] . We performed t -tests for the scores of the 4 data

ets, and obtained the p -values: 0.031, 0.009, 0.023 and 0.019 with

ll the p -values less than 0.05. Thus our results were significantly

etter than Xie et al.’s. 
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Fig. 7. The average top- K score curves of the 4 data sets by using Xie et al.’s method [2] and ours. In each set, the orange one is ours and the blue one is Xie et al.’s. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. A failure case. 
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b  
ime complexity. Given n segmented 3D scenes, we need to per-

orm scene matching for O ( n ) times to obtain the final Aug-

ented Graph . It only took about 1 − 2 s to perform each scene

atching and less than 1 s for each synthesis operation, mea-

ured on a PC with an Intel Core 2 Duo 2.4 GHz CPU and 16G

AM. The facing direction estimation for each furniture object

an be time consuming, due to the slow symmetry plane esti-

ation. The average time used for the facing direction estimation

f each scene was about 30 s in our experiments. So once the

iven scenes are segmented and oriented, our algorithm is fast and

fficient. 
imitations. Our method suffers from the following limitations.

irst, due to the lack of prior knowledge which might be learned

ia learning algorithms, our method cannot guarantee that ev-

ry synthesis operation is functionally plausible, especially for the

ransfer operation. Second, currently we do not consider some

igh-level relations, such as symmetry and concentric relations

or layout reconstruction, which will be fitted using our current

elations. Besides, when performing the scene matching between

he un-labeled furniture objects, our bounding-box based Object

atching Energy may not be so descriptive than those using la-

eled or semantic information. As shown in Fig. 8 , due to the



54 S.-S. Huang et al. / Graphical Models 85 (2016) 46–55 

Fig. 9. Gallery of scene synthesis results for some typical sets of scenes. Each scene (marked with ∗) is segmented into meaningful furniture objects, shown in different 

colors. We get dozens of new scenes with varying geometry and arrangement and randomly place some of them in this figure with the small synthesis compatibility value. 

Please find more results in the supplementary materials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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r  
limited layout information of the two scenes, the established

matching between the two scenes is not very appropriate. Per-

forming the replacing operation, our method obtained a less suc-

cessful result. In other words, our scene synthesis results rely on

the scene matching quality, which is another limitation of our

method. 

Discussions. In this paper, we only consider one-to-one matching

when performing scene matching. The key observation for this

strategy is that we would like to obtain the exact layout match-

ing between scene pairs. However, there may be similar objects

between scene pairs, thus leading to one-to-many matching. Con-
idering such a one-to-many constraint can lead to more matching

nformation. However, it will also introduce more complexity for

raph augmentation and the subsequent scene synthesis. Another

ssue is about the room structures such as doors and windows.

n this paper, we focus on interior 3D scenes without using any

oor or window information, which is widely studied by previous

orks [1,2] . We leave these two considerations as future works. 

. Conclusion 

In this paper, we introduced a method to synthesize scenes di-

ectly from unlabeled 3D interior scenes. Each scene is formulated
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s a structure graph associated with a relationship set. We estab-

ish a one-to-one matching between the layout subgraphs of the

tructure graph pairs via graph matching, and augment them into a

nified structure Augmented Graph . Based on the Augmented Graph ,

e define three synthesis operations, i.e., replacing , growing , trans-

er , providing a flexible way to synthesize new, nontrivial scenes.

ur scene matching approach is general and might be used to an-

lyze scenes for other applications. In the future, we would like to

mprove the graph augmentation for example using an advanced

raph matching approach [31] to extract the prior knowledge es-

ecially the structure information from scene data, and use it to

uide scene synthesis and other geometry applications. 
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